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Abstract 
In dual control, the control input has a dual role so that the system with uncertain parameters should be controlled 
carefully while obtaining quality system information to identify. This paper deals with the effects of our 
approximate method of dual control on the performance of electromagnetic suspension system. This method 
compensates a weakness of model predictive control which requires an accuracy system model. The performance 
weight between the control and the identification is formulated by a single design parameter. We show 
simulations when varying the design parameter of magnitude of excitation in order to study the effects on the 
control and identification result. 
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1. Introduction 

    Noncontact electromagnetic suspension (EMS) technique has been used in various fields such as levitated vehicle, 
satellite and artificial heart. The system is unstable, and therefore feedback controller is needed for stable levitation. To 
achieve stable levitation, it is necessary to obtain high quality system model. In this paper, we study the effects of the 
duality parameter for the tradeoff between control and identification on the EMS performance, in which the approximate 
dual control establishes a simultaneous optimization for control and identification (Matsuda and Sakamoto, 2015). The 
information matrix is used to obtain quality system information for the identification. The duality parameter is formulated 
as the weight between control and identification. The performance simulations are shown by varying duality parameter 
in order to change the level of excitation. 

2. Approximate dual control formulation 

    The dual controller includes three blocks: (a) Kalman filter to estimate the system parameters, (b) Model predictive 
controller, and (c) Excitation unit for quality identification. 

2.1 Model predictive control 

  We use auto regressive exogenous (ARX) model for the dual control as follows: 

 =   − 
 −   − 

 =  (1)

 =  ⋯ 				− ⋯ − (2) =  − 1 ⋯  − 				 − 1 ⋯  −  (3)
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where Z(k) is the regression vector containing the sequences of input u(k) and output y(k), θ the parameter vector, na and 
nb denote the number of lagged inputs and outputs respectively. The parameter vector θ is estimated by using the Kalman 
filter, where the filtering algorithm is given by the following recursive equations: 

where  is the estimated parameter vector, K(k) the Kalman gain, P(k) the covariance matrix of θ(k), σξ2  the variance 
of white noise, and Q the covariance matrix of system noise.  
   Then, the model predictive control (MPC) calculates the control input sequence using the estimated parameter vector. 
The MPC problem is formulated as follows: 

where Uc(k) is the control input vector, QMPC and RMPC the positive weighting matrices, r the reference trajectory, umin

and umax the hard constraint on the system input. The MPC is effective with the ideal model, however, the numerical 
conditions of the system parameter can vary every second or is uncertain due to sensor noise. Therefore the MPC needs 
quality information to estimate the system parameters. 

2.2 Maximization of information matrix

In order to search for quality identification, we employ maximization of the minimum eigenvalue of the information 
matrix (Rathousky and Havlena, 2006) (Zacekova et al, 2013). The algorithm is given as follows. 

where u1,…,uHc are the recalculated control input, λmin(A) the minimum eigenvalue of matrix A, α the duality parameter. 
The magnitude of excitation for the identification can be tuned by varying the parameter α. In the equation (12), the term 

 + 1 =  +  + 1 −  (4) + 1 =  +  (5) + 1 =  −  + 1 +  (6)

 = arg	min  (7)

 = ‖ − ‖ + ‖‖


 (8)

subject to  =  (9) =  				⋯ ,  ≤  ≤ ,  = 1, ⋯ ,  (10)

 = arg	max  (11)

 =   
  (12)

subject to  =  (13) =  								⋯ ,  ≤  ≤ ,  = 1, ⋯ ,  (14)

‖ − ‖ + ‖‖


 ≤ ,				 ≥ 1 (15)

 
 (16)
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represents the increment of the information matrix in Hc steps. The control input satisfies the PE condition if the minimum 
eigenvalue of the information matrix is positive semi-definite:

where γ is a scalar specifying the level of excitation and I is a unit matrix of the corresponding dimensions. 
   The algorithm of maximization calculates control input vector U(k). The first input u1 is only applied to the control 
object. 

2.3 Electromagnetic suspension model 

Figure1 shows a one-degree of freedom EMS model for our study. The control input is given as the applied voltage 
for the electromagnet, and we assume that the coil current is the measured output in the control system. In the modeling, 
the fringing effect and the leakage flux are neglected and the permeability of the magnetic material is constant for 
simplicity. The dynamics of the system is given by  

where x is the gap, M the mass, g the gravity acceleration, v the applied voltage, i the coil current, R the resistance, L(x) 
the self-inductance, F the attraction force, N the number of  coil turns. 

3. Simulation 

 Simulations of the approximate dual control for self-sensing electromagnetic suspension system are shown to see 
the effects of the duality parameter on the control performance. The ARX model for system is derived by using Eqs. (18) 
and (19). The initial parameter vector is θ = (0.101 -0.210 0.101 2.970 -2.937 0.969)T. Table 1 summarizes the system 
parameters, while Table 2 shows the design parameters for the control system. The simulations (Lofberg, 2016) were 
carried out by setting the duality parameter as α =1, 2, and 10. The reference gap is 1mm and the coil resistance was 
changed from 0.3Ω to 0.322Ω effect of parameter robustness.  Figure 2 shows the responses of the control system for the 
period of 0.05 – 0.4 [s], which corresponds to the steady state of the numerical simulation. Figure 3 shows the estimated 
parameters, and Figure 4 shows the minimum eigenvalue of the information matrix.  

In order to evaluate the cases for different values of the duality parameter, we calculated the root mean square error 
(RMSE), which is given by 

 
 ≥  (17)

  +  −  = 0 (18)

 =  +   (19)

 = 
4  + 2 (20)

Fig.1 Electromagnetic suspension model 
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where N is the number of data. Table 3 shows the results for the dual control with different parameter settings. In  
Table 3, uvar denotes the variance of applied voltage and ̅ denotes the average of minimum eigenvalue of the 
information matrix. When the duality parameter α is large, it can be observed that the applied voltage fluctuations and 
the average minimum eigenvalue are large. Since the system obtained sufficient information to identify, the 
identification performance improved. However, too much excitation may cause unfavorable influence on the control 
performance so that we need to select a suitable duality parameter. 

Table 3 the results for dual control with different parameter setting 
 xRMSE θRMSE uvar ̅ 

α = 1 1.76×10-4 1.02×10-2 0.893 9.89×10-6

α = 2 1.40×10-4 8.20×10-3 1.18 5.58×10-5

α = 10 3.81×10-4 8.17×10-3 1.02 7.33×10-5

4. Conclusion 

 This paper discussed the performance weight between the control and the identification by varying the design 
parameter for the self-sensing electromagnetic suspension with an approximate dual control technique. The simulation 
results show the magnitude of the duality parameter determines the weight for control and identification performances. 
High excitation improves the identification, while the control performance becomes worse. The performance weight is a 
tradeoff between the performances so that we have to decide an appropriate value depending on the purpose. 

  

 = 1  −  (21)

 = 1  −  −  (22)

Table 1 System parameters 

Name Value 
Permeability of free space 4π×10-7 

Mass of the floating object [kg] 1.06 
Nominal relative permeability of iron 5000 
The average length of the flux path [m] 0.27 
Nominal air gap length [m] 10-3 

Nominal current [A] 1.027 
Coil turns 280 
Initial coil resistance [Ω] 0.3 
Pole face area [m2] 4×10-4 

Sampling time [s] 0.002 

Table 2 Controller parameters 

Name Value 
σξ2 10-5 

Q 10-8I
QMPC 1 
RMPC 1 
umax 5
umin -5 
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(a) Gap                                          (b) Velocity 

(c) Current                                       (d) Voltage 

Fig. 2 The responses of the control system. The simulation of parameter α = 1 is plotted with the solid (black), parameter 
α = 2 is plotted with the dashed (red), parameter α = 10 is plotted with dashed and dotted (green), respectively. 

(a) parameter a1                                   (b) parameter a2

(c) parameter a3                                    (d) parameter b1 

(e) parameter b2                                    (f) parameter b3

Fig. 3 The estimated parameters of ARX model using a Kalman filter. Parameter α = 1 is plotted with the solid (black), 
parameter α = 2 is plotted with the dashed (red), parameter α = 10 is plotted with dashed and dotted (green), 
respectively. 
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Fig. 4 Minimum eigenvalue of information matrix. Parameter α = 1 is plotted with the solid (black), parameter α = 2 is 
plotted with the dashed (red), parameter α = 10 is plotted with dashed and dotted (green), respectively. 
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