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Abstract 
This paper is a continuation of the work presented in (Gerami,,et al., 2015), which explored the use of the 
Lur’e formulation to achieve increased dynamic load capacity in active magnetic bearings (AMBs). The 
increase in the load capacity was achieved by developing a nonlinear model that enabled the system to operate 
in the nonlinear region of the magnetization curve. While the previous work focused on the theoretical 
development of the modeling and control approach, this paper verifies the results by experiments conducted on 
a rocking beam test rig. The experiment demonstrates that the proposed modeling and control approach 
significantly improves the transient response and disturbance rejection capabilities of the magnetic bearing 
system compared with present industrial practice. Based on the excellent agreement between simulation and 
experimental results, it is shown that existing industrial AMBs could be modified to be significantly more 
resilient to unknown external disturbances, and therefore result in fewer shutdowns and less associated damage 
to backup bearings. In addition, for new AMB applications, smaller AMBs could be designed using this 
method which would be able to handle the same worst-case disturbance forces as larger AMB systems based 
on standard modeling and control methods. 

Keywords : Magnetic Bearing, Nonlinear Modeling, Lur’e Formulation Linear Matrix Inequalities, 
Disturbance Rejection, Transient Response  

 
1. Introduction 

 
Active magnetic bearings (AMBs) are currently employed in significant numbers in industrial turbomachinery. 

Conventional practice is to develop controllers for the rotor system supported by these nonlinear actuators by first 
performing a linearization of the plant around a fixed operating point. This paper advocates a different approach 
presented in (Gerami, et al., 2015) where a Lur’e model of the bearing nonlinearities is employed. The goal of this 
investigation is the experimental verification of the improvement of transient response and disturbance rejection by 
allowing the feedback control to effectively operate even when the core material of the electromagnet experiences flux 
densities approaching magnetic saturation. 

 
A number of previous investigations have examined the control of nonlinear AMB systems. These efforts can be 

categorized on the basis of the nonlinearity involved and the controller synthesis approach employed.  
 

AMB Nonlinearities: A number of physical phenomena give rise to the nonlinearities present in magnetic bearings. 
The nature of force generation in an AMB system is fundamentally nonlinear even before any non-idealities of the 
actuator or drive electronics are considered. In addition to this nonlinearity, there are other important nonlinear 
elements in AMB systems (Ji, et al., 2008): 

1. Nonlinear magnetization of the ferromagnetic core material, including magnetic saturation at high values of 
coil current; 

2. Saturation of the power amplifier current and limits to its slew rate that result from the operational 
capabilities of the power amplifier as well as the coil inductance (Maslen, et al., 1989) 
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3. Coupling between electromagnet flux paths that arise from stator geometry.  
The first and second nonlinearities have the most significant effect on the actuator force limit and are considered 

during the controller synthesis procedure presented in this paper.  
 

Control Design Approach: Many research efforts have examined nonlinear control of AMBs. These approaches can 
be broadly placed into four categories depending on how the nonlinearity is treated during control system design: (1) 
the nonlinearity is not modeled but instead is accommodated in design via robustness to norm-bounded uncertainty (i.e., 
small gain approach); linear controller synthesis is carried out via robust control techniques such as 𝜇𝜇-synthesis 
(Nonami and Ito, 1996, Fittro and Knospe 2002, Lanzon and Tsiotras, 2005); (2) the nonlinearity is characterized via its 
sector bounds (i.e., absolute stability approach); linear controller synthesis is carried out via linear matrix inequalities 
(LMIs) (Hu, et al., 2002, 2003, Fang, et al., 2004, Sanbayashi, et al., 2015, Gerami, et al., 2015); (3) the nonlinearity is 
‘removed’ via feedback linearization (Lindlau and Knospe, 2002, Hsu and Chen, 2002, Li, et al., 2003, Franco, et al., 
2005), so as to enable the use of linear control tools for the synthesis of a linear feedback controller; and (4) the 
nonlinearity remains unaltered; controller design techniques for nonlinear systems (e.g., backstepping (Queiroz, et al., 
2005), sliding mode control (Cho, et al., 1993, Tian, et al., 1996, Rundell, et al., 1996, Lee, et al., 2003, Chen and Lin, 
2011), are directly employed on the nonlinear plant. In this paper the second approach is examined. Specifically, we 
seek to design controllers that are effective when the electromagnetic actuators are operating close to the saturation flux 
density of the ferromagnetic materials used. This is done by treating the nonlinear magnetization as a Lur’e problem 
and developing LMIs for stability and performance of the closed loop system.  

 
Lur’e Systems: A Lur’e system is a feedback interconnection of a linear time-invariant system and memoryless, 
possibly time-varying nonlinear block diagonal element that satisfies sector-bound conditions (refer to Figure 1). Only 
a few investigations have used a Lur’e systems approach for the nonlinearities related to magnetic bearing systems. 
LMI techniques were used to synthesize AMB controllers for systems with gyroscopics (Sanbayashi, et al., 2015) 
actuator saturation (Hu, et al., 2002, Fang, et al., 2004), and state constraints (Hu, et al., 2003). In this study, the Lur’e 
system approach to controller design for optimized transient and disturbance rejection performance as developed in 
(Gerami et al., 2015) is experimentally evaluated on a single degree-of-freedom AMB test rig. The remainder of the 
paper is organized as follows. In Section 2 the experimental test rig is presented. The modeling method is explained 
briefly in Section 3, Experimental results are presented in Section 4 and Section 5 concludes the paper. 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: The Lur’e Problem Interconnection 

 

2. Experimental test rig 
 

A rocking beam test rig is used for modeling, simulation and experimental verification purposes (see Figure 2). The 
dynamic portion of the rig consists of a beam mounted on a single DOF pivot and 3 electromagnets: two control 
electromagnets (one at each end of the beam) and one disturbance electromagnet used to impose disturbance forces on 
the beam. The beam rotates about the knife-edge pivot and the control electromagnets produce the necessary forces to 
stabilize the beam. This experimental setup’s dynamics are simple; however, they include all of the fundamental 
features of an industrial magnetic bearing system. The rocking beam test rig system parameters are summarized in 
Table 1. 

  

A,Bu ,Bw
  

W

  

Cy

  

Cq

  

ψ
  

X

  

Y

  

q  

U

656



 

 
 

3 

 

 

Figure 2: Rocking beam test rig 

 

Table 1 Rocking beam parameters 

Symbol Specification Value Unit 



J  Moment of inertia  153.33 



gm2 



La  Control electromagnet distance 0.1556 



m 



Lse  Sensor distance 0.0889 



m 



Ld  Disturbance Distance 0.2302 



m 



Lbeam Beam Length 0.4731 



m 



g0  Nominal gap width  0.762 



mm  



A  Pole face area  161.3 



mm2  

 

3. Modeling  
The dynamics of the test rig can be modeled by the following differential equation: 

 

ddaa FLFLJ           (1) 

 csa IfkF            (2) 

where J is the moment of inertia of the beam, 



  is the angle between the beam and the horizontal axis, 



Fa  is the net 
force of the control actuators on the beam, 



Fd  is the disturbance electromagnet force, 



La  is the distance between the 
control electromagnets and the pivot, and 



Ld  is the distance between the disturbance electromagnet and the pivot, 



ks 
is the actuator open-loop stiffness, which can be obtained by linearizing the force around its equilibrium point. 



f I  is 
the force of the magnetic actuator assuming no displacement. In terms of the Lur’e problem, 



f I  is the nonlinear 
input function ( from Figure 1) and should therefore satisfy a sector condition: 

 
  IkIfIk 21           (3) 

 
The sector bounds are lines with constant slopes of 



k1 and 



k2 (refer to Figure 3). 
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Figure 3: Sector Condition 

 
Traditionally the magnetic bearing actuator force is calculated using the following equations: 
 



F 
A
0

B2          (4) 



B 
0NI

2g
          (5) 

 

where B is the flux density of the electromagnetic circuit, A is the cross sectional area of the core material, 



0  is the 
permeability of free space, N is the number of turns in the coil, I is the coil current and g is the gap between the two 
parts of the core material (stator and flotor). However, for large flux densities, the silicon iron magnetic reluctance is 
significant and should therefore not be ignored as it is in Eq. (5). By considering this extra reluctance term, the 
magnetic flux density can be calculated as: 

 



B 
0NI

2g
0


Ls
r

          (6) 

 

in which 



Ls is the length of silicon iron in the magnetic circuit and 



r  is the relative permeability of the silicon iron, 
which is a function of the flux density itself. Based on Eq. (6), the nonlinear actuator force can be calculated and 
substituted into the system level dynamic equations (Eq. 1 and 2) [Gerami et al. 2015]. 
 
Constraints on the physical operation of the magnetic bearing system were also taken into account in the modeling and 
control synthesis procedure performed in this work. The operational limits included are: 1) the angular movement of 
the beam, which is physically limited by the back-up bearings, and 2) the actuator currents, which are limited by the 
wire gauge and amplifier capabilities: 

 



 max           (7) 



0 I1,I2  Ib  Imax          (8) 

where 



Imax  is the limit on the control current 



I c . 
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Details of the full derivation of the dynamic system equations, the conversion of the problem into the Lur’e format, 
inclusion of the system constraints and the formulation of the associated LMI can be found in (Gerami, et al., 2015). 
 

4. Results (Simulation vs. Experimental Results) 
 

The control synthesis procedure for optimized transient response and disturbance rejection performance discussed 
in detail in (Gerami, et al., 2015) was used to design and implement both Classical Jacobian Linearization (JL) and 
Lur’e Description (LD) controllers for the rocking beam test rig. 
 
Transient Response: As can be seen from Figure 4, the resulting LD controller shows a significant transient response 
improvement over the conventional JL controller. The LD controller exhibits a rise time, which is 17% faster than the 
JL controller. 

 

 
Figure 4: Experimental transient response to a 0.1mm (4mils) step comparing controllers based on Jacobian 

linearization (JL) and Lur’e Description (LD) formulation  

Disturbance Rejection: The maximum guaranteed disturbance energy index 

 

m a x   that the JL and LD controllers 
were found to be able to tolerate were 10 and 43



N2s, respectively. Following controller synthesis, these controllers 
were implemented on the experimental setup. 

A controlled external disturbance was imposed on the beam by using the disturbance electromagnet, situated 
toward the far end of one side of the rocking beam. Different pulse disturbance inputs were devised for testing the 
closed loop system, with energy indices of 10 



N 2s and 43



N 2s.  The durations and amplitudes of these disturbance 
inputs are summarized in Table 2. 

 
Table 2 Dusturbance foree, duration, and energy index 

 Disturbance 1 Disturbance 2 Disturbance 3 Disturbance 4 Disturbance 5 Disturbance 6 

Duration(s) 0.01 0.05 0.1 0.01 0.05 0.1 
Force (N) 31.6 14.1 10 65.6 29.3 20.7 

Energy Index (



N 2s) 10 10 10 43 43 43 

 

The JL and LD controllers were tested with all pulse disturbances listed in Table 2, and the experimental results 
were compared with simulation predictions. As an example, the JL and LD controllers’ responses to an impulse with an 
energy index of 43



N2s and a duration of 0.1s are depicted in Figure 5 and 6. The simulation and experimental data are 
in very good agreement. In addition, the LD controller significantly improves the system’s response to an external 
disturbance (by a factor of 4). 
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Fig. 5: Response to disturbance force of 20.7N with a duration of 0.1s (Jacobian Linearized model based control design) 

 

 

Fig. 6: Response to disturbance force of 20.7N with a duration of 0.1s (Lur’e Description model based control design) 

 
Figure 7 compares the JL and LD controller responses to all pulse disturbances from Table 2 with an energy index 

of 43 



N2s.  In all experiments, the displacements were recorded at the sensor location where the gap between the 
sensor stand and the beam is 0.38mm (15 mils).  As can be seen from Figure 7, an impulse with the energy index of 43 



N2s



t  0.01s  drove the beam using the JL controller to impact the sensor stand. The same disturbance impulse 
moved the beam using the LD controller just under 0.15mm (6 mils), which is a 2.5x improvement. 
 

 

Figure 7: System responses to external disturbances with energy index of 43



N2s 
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5. Conclusion 
 

Based on the results obtained from the rocking beam test rig, the following conclusions can be drawn: 
 By following a rigorous experimental model and parameter identification procedure, excellent correlation was 

obtained between the experimental data and theoretical predictions. 
 In comparison to Jacobean linearized control design, a significantly improved transient response was achieved 

through the use of the proposed modeling and control design procedure. This was demonstrated by a 17% 
faster rise time. 

 In comparison to Jacobean linearized control design, significant performance improvement in the form of a 
higher dynamic load capacity was achieved through the use of the proposed nonlinear modeling and LMI 
method for control synthesis. This was exemplified by the ability of the system to dissipate impulse 
disturbances with 4 times the energy compared with that achievable by a traditional control design. 

 The main contribution of this work can be summarized as: A combined approach for modeling and control of 
magnetic bearings that optimally uses the extra load capability within the nonlinear magnetization region was 
developed and experimentally verified. Based on these results, existing industrial AMBs could be modified to 
be significantly more resilient to unknown external disturbances. And for new AMB applications, smaller 
AMBs could be designed which would be able to handle the same worst-case disturbance forces as larger 
existing AMB systems. 
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