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Abstract 
Active magnetic bearings (AMBs) support rotors using electromagnetic force rather than mechanical force. It 
is necessary to accurately identify AMBs force coefficients (equivalent stiffness and damping) since they play 
a key role in the rotordynamic analysis. The identification is usually performed by analyzing the unbalance 
response; however, the unknown residual unbalances will decrease the identification accuracy and rigid rotor 
model is only available when the rotating speed is far below the bending critical speed. To address the above 
issues, this paper proposes an identification algorithm to estimate the stiffness and damping parameters of a 
flexible rotor AMBs system using two independent unbalance response data. The proposed algorithm is 
employed for experimental identification for a flexible rotor AMBs system ranging from 3,000 rpm (50 Hz) to 
30,000 rpm (500 Hz). 
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1. Introduction 

 
Active magnetic bearings generate forces through magnetic fields rather than mechanical forces as in lubricated 

fluid films or contact of rolling element bearings; therefore, the special advantage of AMBs is that there is no contact 
between bearings and rotor, and this permits operation with no lubrication, no mechanical wear, long life, lower costs 
and high attainable rotating speed (Schweitzer and Maslen, 2009). Another attractive advantage of AMBs is that the 
dynamic magnetic force parameters, equivalent stiffness and damping, are closely related to the feedback controller 
parameters, which can be changed easily (Lim and Cheng, 2007), such that the rotordynamics can be controlled and 
changed actively through the bearings. 

For traditional mechanical bearings, it is vital to accurately obtain the dynamic parameters since these coefficients 
are the foundation for the rotordynamics analysis. Different from the mechanical bearings, for the AMBs, the 
identification usually could be classified into the following two aspects: (1) identify the force/displacement factor and 
the force/current factor (Kim and Lee, 1999; Tiwari and Talatam, 2015; Tiwari and Chougale, 2014; Fang, et al., 2014; 
Tang, et al., 2014); (2) identify the equivalent stiffness coefficient and damping coefficient (Lim and Cheng, 2007; 
Humphris, et al., 1986; Williams, et al., 1990; Lim, et al., 2011; Zhou, et al., 2016). Both identifications play an 
important role for the rotor AMBs system. Specifically, the force/displacement factor and the force/current factor is the 
key in any current controlled active magnetic bearing controller design process since they reflect the property of 
magnetic force without controlling; the equivalent stiffness and damping coefficients are the foundation for the rotor 
dynamics analysis since the controller effects are considered in this condition. This paper is trying to identify the 
equivalent stiffness and damping coefficients for a flexible rotor AMBs system. 

Research has been carried out on the estimation of equivalent stiffness and damping parameters of AMBs, but most 
of these works have been done for a rigid rotor model at no rotating condition. The identification method using 
unbalance excitation and the corresponding unbalance response has been adopted in mechanical bearings (Santiago and 
San, 2007a, 2007b), however few works have been reported on its application for AMBs. The disadvantage of this 
method is that the existence of residual unbalance on the rotor could bring error in the unbalance excitation force 
calculation since the residual unbalance distribution is unknown and may change during operation for a flexible rotor. 
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Perfect balancing is very costly and sometimes even impossible. Thus, a certain amount of residual unbalance will 
always occur. In the present work, an algorithm is proposed to estimate the equivalent stiffness and damping 
parameters considering the residual unbalances in a flexible rotor that is fully levitated by AMBs. The proposed method 
is applied to our test rig to identify the AMBs stiffness and damping coefficients ranging from 3,000 rpm (50 Hz) to 
30,000 rpm (500 Hz). 

The remainder of the paper is organized as follows. Section 2 describes the rotor AMBs test rig employed in this 
paper and the mathematical modeling. Section 3 presents the identification method based on rotor unbalance responses. 
Section 4 describes the unbalance responses and experimental results. Conclusions are drawn in Section 5. 

 
2. Test rig description and flexible rotor modeling 
 

The experimental test rig for this study is designed and built as a research platform, which is pictured in Fig. 1. The 
rotor is supported by two radial and two thrust AMBs and is 0.468 m long and weighs around 2.4 kg. Table 1 
summarizes the physical properties of radial AMBs employed in the test rig. 

       
Fig. 1. An overview of the rotor AMBs test rig. 

Nelson-Timoshenko beam (Nelson, 1980) finite element matrices are adopted to model the rotor according to the 
geometrical and mass information. The assembled parts such as lamination stacks are modeled as lumped mass onto the 
corresponding nodes. Ignoring two DOFs in axial direction, each node contains 2 translational and 2 rotational DOFs. 
After assembling the governing equations for all the elements and incorporating the boundary conditions, the linearized 
equations of motion for the shaft can be expressed as 

𝐌𝐌𝑅𝑅�̈�𝑞 + (𝐂𝐂𝑅𝑅 + 𝛺𝛺𝐆𝐆𝑅𝑅)�̇�𝑞 + 𝐊𝐊𝑅𝑅𝑞𝑞 = 𝑓𝑓(𝑡𝑡),                                                                                                                                                (1) 

where 𝑞𝑞 and 𝑓𝑓(𝑡𝑡) are generalized displacement and generalized force vector in two radical directions; 𝛺𝛺 is the 
rotation speed; 𝐌𝐌𝑅𝑅, 𝐂𝐂𝑅𝑅 and 𝐊𝐊𝑅𝑅 represent square symmetric mass, damping and stiffness matrices, respectively; 𝐆𝐆𝑅𝑅 
is the skew symmetric gyroscopic matrix. For the rotor of our test rig in this study, its theoretical free-free undamped 
mode shapes is shown in Fig. 2. The first bending critical speed is around 480 Hz (28,800 rpm).  

    

Fig. 2. Theoretical mode shapes of free-free rotor.                   Fig. 3. Rotor coordinate system.   

Fig. 3 illustrates the rotor’s coordinate system, namely the four axes that are used in stiffness and damping 
coefficients identification. The AMBs force coefficients are modeled as stiffness 𝐊𝐊𝐵𝐵 and damping 𝐂𝐂𝐵𝐵. Considering 
the residual unbalances effects on the rotor, the equations of motion of the rotor AMBs system can be written as follow, 

𝐌𝐌𝑅𝑅�̈�𝑞 + (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)�̇�𝑞 + (𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵)𝑞𝑞 = 𝑓𝑓   + 𝑓𝑓                                                                                                               (2) 
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Table 1 
Radial AMBs specifications 

Parameter Value 

Coil number of signal pole 75 
Magnetic pole area 2×10-4 m2 

Bias current 1.5 A 
Air gap 0.3 mm 
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where 𝑞𝑞 is generalized displacement vector in two radical directions; 𝑓𝑓    is the unbalance force generated by the 
known unbalanced mass screwed on the rotor; 𝑓𝑓    is the residual unbalances force generated by the residual mass 
from the rotor, which can be written as follow: 

𝑞𝑞 = ,𝑞𝑞  𝑞𝑞𝐵𝐵  𝑞𝑞𝐵𝐵  𝑞𝑞 -   

𝑞𝑞𝑖𝑖 = ,𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝛽𝛽𝑥𝑥𝑖𝑖 𝛽𝛽𝑦𝑦𝑖𝑖-,  i=1…N 

𝑓𝑓   = ,  𝑓𝑓   -     

𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓
= ,𝒇𝒇𝒓𝒓𝒓𝒓 𝒇𝒇𝒓𝒓𝒓𝒓  𝒇𝒇𝒓𝒓𝒓𝒓−𝒓𝒓 𝒇𝒇𝒓𝒓𝒓𝒓-                                                                                                                          (3) 
where 𝑞𝑞𝐵𝐵  and 𝑞𝑞𝐵𝐵  represent the displacements at two AMBs; 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  represent translations in the x and y 
directions; 𝛽𝛽𝑥𝑥𝑖𝑖  and 𝛽𝛽𝑦𝑦𝑖𝑖 are the angular displacements about the y and x axes, respectively; 𝑓𝑓 𝑖𝑖 is the unknown 
residual unbalances force generated from rotor. 𝑓𝑓  is the unbalance excitation force generated by known unbalance 
mass screwed on the rotor, which can be written as: 

𝑓𝑓 = {
𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
 
 
} =      {

    ( 𝑡𝑡 +  )
    ( 𝑡𝑡 +  )

 
 

} =      {
 𝑖𝑖(    )
   𝑖𝑖(    )

 
 

}                                                                                              (4) 

where    is the unbalance mass;   is the radius between the unbalance location and the axis of shaft. Note that the 
periodic forced excitation with frequency   caused by rotor unbalance is synchronous with rotating speed, i.e. 
  = 𝛺𝛺. In general, 𝑓𝑓   =      𝑖𝑖   and 𝑓𝑓   =      𝑖𝑖  , so the unbalance response possesses the same frequency as 
the excitation, i.e. 𝑞𝑞 =   𝑖𝑖  . Therefore, (2) can be written as the following algebraic form: 

,(𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)- =     +     ,                                                                                               (5) 

where 

𝐊𝐊𝐵𝐵 =

[
 
 
 
      
 𝐊𝐊     
     
   𝐊𝐊   
     ]

 
 
 
 
                      𝐂𝐂𝐵𝐵 =

[
 
 
 
      
 𝐂𝐂     
     
   𝐂𝐂   
     ]

 
 
 
 
                                                                        (6) 

The AMBs stiffness and damping matrices incorporate the following (yet unknown) coefficients: 

𝐊𝐊 𝑖𝑖 = [
 𝑥𝑥𝑥𝑥𝑖𝑖  
  𝑦𝑦𝑦𝑦𝑖𝑖]𝑖𝑖

  𝐂𝐂 𝑖𝑖 = [
 𝑥𝑥𝑥𝑥𝑖𝑖  
  𝑦𝑦𝑦𝑦𝑖𝑖]𝑖𝑖

, i=1,2                                                                                                                         (7) 

 
3. Identification algorithm considering the residual unbalances effects 

 
The identification algorithm for the AMBs stiffness and damping coefficients is based on the measurement of rotor 

unbalance response caused by known unbalance mass screwed on the rotor. However most of these identification 
algorithms are proposed for a rigid rotor model and the unknown residual unbalance is not considered, which is only 
available when the running speed is far below the bending critical speed. In this paper, we proposed a new 
identification algorithm, which could eliminate the residual unbalance negative influence for a flexible AMBs rotor 
system. 

In (2), the      could be calculated easily from the known unbalance mass screwed on the rotor and the 
corresponding rotating speed, but the residual unbalance force      is difficult to acquire. However, we can eliminate 
the residual unbalance disadvantages from two groups of independent unbalance response data. In group 1#, the rotor 
operates without adding known unbalance mass. In group 2#, the known unbalance mass is screwed on the rotor. 
Therefore, the algebraic form of (5) for each group can be written as 

,(𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)- 𝒓𝒓 =     ,                                                                                                            (8) 
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,(𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)- 𝟐𝟐 =     +                                                                                              (9) 

where the  𝟏𝟏 and  𝟐𝟐 represent the unbalance response for each group.      is the known unbalance force screwed 
on the rotor. Note that residual unbalance force      is equivalent in these two conditions since the residual unbalance 
mass is not changed. So, the residual unbalance effects can be removed by (9)-(8), which can be written as, 

,(𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)- 𝒎𝒎 =                                                                                                              (10) 

where 

 𝒎𝒎 =  𝟐𝟐   𝟏𝟏                                                                                                                                                                                  (11) 

therefore, the transfer function between unbalance excitation and displacement (dynamic stiffness matrix) is 

𝑯𝑯 = ,(𝐊𝐊𝑅𝑅 + 𝐊𝐊𝐵𝐵  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝐂𝐂𝐵𝐵 + 𝛺𝛺𝐆𝐆𝑅𝑅)-                                                                                                                   (12) 

here, the dynamic rotor stiffness matrix 𝑯𝑯𝑅𝑅 and dynamic AMBs stiffness matrix 𝑯𝑯𝐵𝐵 can be defined as 

𝑯𝑯𝑅𝑅 = ,(𝐊𝐊𝑅𝑅  𝐌𝐌𝑅𝑅  ) +   (𝐂𝐂𝑅𝑅 + 𝛺𝛺𝐆𝐆𝑅𝑅)- 
𝑯𝑯𝐵𝐵 = 𝐊𝐊𝐵𝐵 +    𝐂𝐂𝐵𝐵                                                                                                                                                                        (13) 

Combining the dynamic rotor stiffness matrix and dynamic AMBs stiffness matrix together, the (10) can be written 
as below: 

𝑯𝑯 𝒎𝒎 = (𝑯𝑯𝑅𝑅 + 𝑯𝑯𝐵𝐵) 𝒎𝒎 =                                                                                                                                                         (14) 

Define 𝑍𝑍𝐵𝐵  and 𝑍𝑍𝐵𝐵  are the transitional displacement vectors of AMBs supporter places, which is expressed by 

𝑍𝑍𝐵𝐵 = ,𝑥𝑥𝐵𝐵 𝑦𝑦𝐵𝐵 -    
𝑍𝑍𝐵𝐵 = ,𝑥𝑥𝐵𝐵 𝑦𝑦𝐵𝐵 -                                                                                                                                                                        (15) 

where (𝑥𝑥𝐵𝐵 𝑦𝑦𝐵𝐵) are the measured synchronous rotor responses at AMBs places. In order to identify the unknown 
AMBs coefficients, the algebraic system of (14) is reordered by use of matrix operations to bring the supporting 
displacement vectors 𝑍𝑍𝐵𝐵  and 𝑍𝑍𝐵𝐵  into the upper rows, 

�̅�𝑯𝑅𝑅 {
𝑍𝑍𝐵𝐵 
𝑍𝑍𝐵𝐵 
𝑍𝑍𝑂𝑂
} + �̅�𝑯𝐵𝐵 {

𝑍𝑍𝐵𝐵 
𝑍𝑍𝐵𝐵 
𝑍𝑍𝑂𝑂
} = {

 
 

 ̅   
}                                                                                                                                                   (16) 

where 𝑍𝑍𝑂𝑂 is other displacement vectors except 𝑍𝑍𝐵𝐵  and 𝑍𝑍𝐵𝐵 . The �̅�𝑯𝑅𝑅 and �̅�𝑯𝐵𝐵 are the reordered matrix for 𝑯𝑯𝑅𝑅 and 
𝑯𝑯𝐵𝐵, respectively.  

In order to calculate conveniently, �̅�𝑯𝑅𝑅 and �̅�𝑯𝐵𝐵 are partitioned into sub matrices like below:  

�̅�𝑯𝑅𝑅 = [
𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅 3
𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅 3
𝑯𝑯𝑅𝑅3 𝑯𝑯𝑅𝑅3 𝑯𝑯𝑅𝑅33

]   �̅�𝑯𝐵𝐵 = [
𝑯𝑯𝐵𝐵   
 𝑯𝑯𝐵𝐵  
   

]                                                                                                               (17) 

where 𝑯𝑯𝐵𝐵  and 𝑯𝑯𝐵𝐵  are the dynamic matrix for the two radical AMBs, which are written as 

𝑯𝑯𝐵𝐵𝐵𝐵 = [
 𝑥𝑥𝑥𝑥𝐵𝐵 +  𝛺𝛺 𝑥𝑥𝑥𝑥𝐵𝐵  

  𝑦𝑦𝑦𝑦𝐵𝐵 +  𝛺𝛺 𝑦𝑦𝑦𝑦𝐵𝐵] , i=1,2                                                                                                                           (18) 

such that Eq. (16) becomes: 

[
𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅 3
𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅  𝑯𝑯𝑅𝑅 3
𝑯𝑯𝑅𝑅3 𝑯𝑯𝑅𝑅3 𝑯𝑯𝑅𝑅33

] {
𝑍𝑍𝐵𝐵 
𝑍𝑍𝐵𝐵 
𝑍𝑍𝑂𝑂
} + [

𝑯𝑯𝐵𝐵   
 𝑯𝑯𝐵𝐵  
   

] {
𝑍𝑍𝐵𝐵 
𝑍𝑍𝐵𝐵 
𝑍𝑍𝑂𝑂
} = {

 
 

 ̅   
}                                                                                      (19) 

In (19), the motion of AMBs support places (𝑍𝑍𝐵𝐵 , 𝑍𝑍𝐵𝐵 ) and load vector  ̅    are obtained from measurements 
and known unbalance mass screwed on the rotor. So from the third row of this equation, 𝑍𝑍𝑂𝑂 can be expressed as 

𝑍𝑍𝑂𝑂 = 𝑯𝑯𝑅𝑅33− * ̅    𝑯𝑯𝑅𝑅3 𝑍𝑍𝐵𝐵  𝑯𝑯𝑅𝑅3 𝑍𝑍𝐵𝐵 +                                                                                                                               (20) 

from the first and second row of (19), we can obtain the follow equations, 
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𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅 3𝑍𝑍𝑂𝑂 =  𝑯𝑯𝐵𝐵 𝑍𝑍𝐵𝐵   

𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅 3𝑍𝑍𝑂𝑂 =  𝑯𝑯𝐵𝐵 𝑍𝑍𝐵𝐵                                                                                                                               (21) 

Here, we define the AMBs transmitted forces 𝑓𝑓𝐵𝐵  and 𝑓𝑓𝐵𝐵 , which can be written as,  

𝑓𝑓𝐵𝐵 =  (𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅 3𝑍𝑍𝑂𝑂)  
𝑓𝑓𝐵𝐵 =  (𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅  𝑍𝑍𝐵𝐵 + 𝑯𝑯𝑅𝑅 3𝑍𝑍𝑂𝑂)                                                                                                                                  (22) 

Because 𝑍𝑍𝑂𝑂  can be obtained from (20), the 𝑓𝑓𝐵𝐵  and 𝑓𝑓𝐵𝐵  values can be calculated. So the AMBs support 
coefficients are determined by: 

𝑯𝑯𝐵𝐵 = [ 𝑥𝑥𝑥𝑥 +  𝛺𝛺 𝑥𝑥𝑥𝑥  
  𝑦𝑦𝑦𝑦 +  𝛺𝛺 𝑦𝑦𝑦𝑦 ] = 𝑓𝑓𝐵𝐵 𝑍𝑍𝐵𝐵 −   

𝑯𝑯𝐵𝐵 = [ 𝑥𝑥𝑥𝑥 +  𝛺𝛺 𝑥𝑥𝑥𝑥  
  𝑦𝑦𝑦𝑦 +  𝛺𝛺 𝑦𝑦𝑦𝑦 ] = 𝑓𝑓𝐵𝐵 𝑍𝑍𝐵𝐵 −                                                                                                                (23) 

 
4. Experimental Identification Results 

 
The rotor unbalance response measurements are conducted ranging from 3,000 rpm (50 Hz) to 30,000 rpm (500 

Hz). The unbalance response less than 3,000 rpm is not recorded since the unbalance displacement amplitude is small. 
Table 2 shows the unbalance mass distributions adopted in the experiment. Two unbalance masses are screwed on rotor 
at node 17 and node 43, respectively. The threaded holes space at 30◦ apart on the rotor, which is shown in Fig. 4. The 
measurement data is collected demonstrated in the following flow chart in Fig. 5. 

        
Fig. 4. The unbalance mass threaded holes. 

The rotating speed signal is measured by a non-contact fibre optical sensor, which is pictured in Fig. 6. The speed 
signal is treated as a reference signal for the measurement of phase for the entire displacements signals. During each 
run, the reference rotating signal is recorded at the same time with the displacement signals. The NI DAQ sampling 
module (NI 9215) is employed to convert the analog signal into digital signal. Then the digital signal is transmitted into 
the computer and stored by Labview program. 

Unbalance displacement data

Kaiser bandpass filter design

First order Fourier series fitting

Zero phase digital filter

Fourier series function

Unbalance amplitude data

Rotating speed data

First order Fourier series fitting

Fourier series function

Unbalance phase data

-

              
Fig. 5. The measurement data collection procedure.             Fig. 6. Speed and reference signal measurement. 

Since the stored time domain signal contains lots noise and we just care about those coincide with the rotating speed, 
we use the band-pass filter to process these signals. The Matlab function kaiserord is used to design n order band-pass 
filter for each speed signal. Conventional filter reduces noise in the signal, but delays the phase. By forward-backward 

Table 2 
The known unbalance distributions on test rotor 

Added place  Mass(g) Radius(mm) Phase(Deg.) 

Node 17 0.98 15 0 
Node 43 0.78 15 180 

 

Threaded holes 

Node 17 Node 43 

645



 

 
 

6 

filtering, zero-phase lag filter reduces noise in the signal and preserves the phase at the same time it occurs in the 
original, which is common tool in off-line filter (Gustafsson, 1996) and employed to filter the time domain signals in 
this paper. Then use first order Fourier series based the least square method to fit the filtered signals, which could be 
written in the follow expression 

𝑦𝑦 =   +      (𝑥𝑥𝑥) +      (𝑥𝑥𝑥),                                                                                                                                             (24) 

from the (24), the amplitude   and phase    values under each rotating speed can be acquired though the parameters 
  ,   ,   , 𝑥, which is written as  

{
 

  = √   +    

  =        (    
)

                                                                                                                                                                              (25) 

Similarly, by performing the first order Fourier series fitting the reference rotating signals, the phase    at each 
speed can be obtained. So, the real   values for the entire displacements signals are written as 

 =                                                                                                                                                                                                (26) 

Speed>30000 rpm

Start

The rotor was given a run-up from 0 to 3000 rpm.

The rotor was kept at this speed for some
duration.

Uunbalance responses at the AMBs position were
recorded by displacement sensor

Run-up by
600 rpm

End

Yes

No

 

Fig. 7. Flowchart of test data process procedure. 

Fig. 7 shows the unbalanced response test data processing procedure. Fig. 8 depicts the measured unbalance 
responses at bearings locations under rotating condition ranging from 50 Hz (3,000 rpm) to 500 Hz (30,000 rpm), in 
which only residual unbalance mass remains on the rotor. Fig. 8 shows the measured unbalance responses at AMBs 
locations resulting from the residual unbalance and the known unbalance masses screwed on the rotor. 
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Fig. 7. Measured rotor unbalance responses (amplitude 
and phase) at AMBs locations, without known unbalance 
mass screwed. 
  

Fig. 8. Measured rotor unbalance responses (amplitude 
and phase) at AMBs locations, with known unbalance 
mass screwed. 
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Fig. 9 depicts the identified AMBs dynamic parameters, equivalent stiffness and damping, obtained from the two 
independent groups of rotor unbalance responses. It is seen that before the first bending critical speed (around 480 Hz), 
the equivalent stiffness and damping values increases steady with the running speed. Since the control parameters for 
both x and y direction of each AMB are the same, the identified coefficients possess the same trend for the two 
orthogonal directions. However, there are still some small unclose agreement, which may be attributed to the small 
discrepancy in mechanical and electrical performance. The identified results fluctuate greater around the critical speed 
since the vibration near the circuital speed becomes greater. 

100 200 300 400 500
5.5

6

6.5

7

Frequency (Hz)

S
tif

fn
es

s 
(N

/m
)

 

 
Kxx2

Kyy2

100 200 300 400 500
-2000

0

2000

4000

6000

Frequency (Hz)

D
am

pi
ng

 (N
*s

/m
)

 

 
Cxx2

Cyy2

100 200 300 400 500
5.5

6

6.5

7

Frequency (Hz)

S
tif

fn
es

s 
(N

/m
)

 

 

Kxx1

Kyy1

100 200 300 400 500
-2000

0

2000

4000

6000

Frequency (Hz)

D
am

pi
ng

 (N
*s

/m
)

 

 
Cxx1

Cyy1

 

Fig. 9. Identified AMBs dynamic force coefficients versus rotor speed. 
 

5. Conclusion and Discussion 
 

This paper presented a AMBs dynamic force parameters identification algorithm for flexible rotor AMBs system. 
In order to improve the identification, the residual unbalance disadvantages are considered and eliminated from two 
independent unbalance tests. The proposed identification method is applied to experimental data from a AMBs rotor 
test rig and the identified results show that the stiffness and damping coefficients on both x and y axes vary along with 
the rotating speed.  

Although the unbalance excitation is an easy and convenient excitation form for running rotor, some drawbacks 
cannot be neglected. For example unbalances beyond certain level may generate excessive unbalance force, which may 
break or damage the rotor system, especially for AMBs rotor system. In the experiment adopted in this paper, above 
30,000 rpm (500 Hz) rotating speed is not performed due to the safety reason. Hence, acquiring the dynamic 
parameters by exciting the rotor using residual unbalance mass from the rotor itself or impulse response measurement 
may be a good choice. Current efforts are directed toward the identification methods mentioned above. 
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