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Abstract 
In this publication, the finite element method (FEM) model of a rotor of permanent magnet (PM) machine with 
surface mounted permanent magnets is updated. Typically rotors are modeled with FEM, but the model is still 
only an approximation of the real rotor. The rotor is constructed from number of different elements and have a 
complex geometry. Electrical machine part might have slits, surface mounted or embedded permanent magnets. 
Elements are often connected with shrink fits and this leads to the properties discrepancy compared to the 
elements described with Timoshenko beam theory. In the work, specific elements are selected as uncertain based 
on engineering experience and the elasticity values of these elements is updated. Experimental data is obtained 
with AMB system identification and then the frequency difference in the resonance and anti-resonance 
frequencies between the experimental data and FEM-model is minimized. When the frequency difference has 
been minimized, the updated FEM-model corresponds better to the experimental data. The updated model is 
utilized for controller synthesis procedure to improve performance of the control system. An AMB PM machine 
with surface mounted permanent magnets was used to test the rotor model update procedure. The procedure 
allowed to fit the model to the experimental data with accuracy of 56.57 %. 

Keywords : System identification, Frequency response function (FRF), Active magnetic bearing (AMB), Finite 
element method (FEM), Permanent magnet (PM), Rotor model update  

 
1. Introduction 
 

In high-speed electrical machines one of the possible bearing solution are active magnetic bearings (AMBs). The 
absence of contact, lubrication freeness, and reduced maintenance makes these bearing quite attractive. In addition as 
magnetic bearings include sensors it makes easy to implement process monitoring and identification in the system.  

For high-speed applications, different types of electrical machines are used. An induction machine with the solid 
rotor can provide a robust solution. The main drawback is low power factor. To overcome this issue the rotor can be 
coated or slitted, in addition end-rings can be used. The slitted rotor is convenient solution because of the ease of 
manufacturing such a structure (Pyrhönen, et al., 2009). Slits in general are used to tune the performance of the rotor and 
the full machine (Yetgin and Turan, 2014; Pyrhönen, et al., 2009).  Permanent magnet (PM) machines on the other hand 
have a high efficiency and high power factor and is the reason to utilize PM machines. PM machines are also suited for 
variable speed applications (Belachen and Arkkio, 2010). 

Modern AMBs utilize model-based controllers to stabilize the system (Maslen and Sawicki, 2007). To obtain such 
controllers an accurate model of the rotor is necessary and desirably with low number of states to reduce the order of the 
controller. Rotors used in high-speed applications with AMBs are modeled with finite element method (FEM). A 
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common approach is to utilize beam elements and discretize the rotor only along its axial dimension (Genta, 2005). The 
full 3D FEM modelling is quite computationally expensive and provides comparable results to 1D model. To take into 
account the flexibility in Timoshenko beam theory the elasticity behavior of material and its Poisson’s ratio are necessary 
(Lösch, 2002). 

The FEM-model of the rotor is still only an approximation of the real rotor. Real rotors have a complex geometry 
and are constructed from number of different components, which are connected with shrink fits, hirth couplings, shaft 
collars and several other methods.  All these uncertainties lead to the properties discrepancy compared to the elements 
described with Timoshenko beam theory. Especially the electrical machine part might have a complex geometry with 
slits, surface mounted or embedded permanent magnets. In PM machines modeling the surface mounted permanent 
magnets is difficult (Faustner, et al., 2015; Belachen and Arkkio, 2010). Modeling PM machines with embedded 
permanent magnets is even more difficult (Han, et al., 2007). 

To update the FEM-model of the rotor authors in (Wróblewski, et al., 2012) present a method which uses resonance 
and anti-resonance frequency information from model and experimental data obtained with AMB system identification. 
With this method, frequency difference in the resonance and anti-resonance frequencies between the experimental data 
and model data is minimized. Some elements in the FEM-model are selected as uncertain based on engineering 
experience. The elasticity value of these elements is tuned to minimize the mentioned difference between experimental 
data and model data. Minimization in this case is done with the well-known Nelder-Mead method (Nelder and Mead, 
1965). 

The application of the above mentioned method to the PM machines with surface mounted permanent magnets is 
not presented in the literature. Thus this paper contributes by analyzing and updating the rotor model of an AMB PM 
machine with surface mounted permanent magnets. 

The paper is constructed as follows. First FEM-modeling, AMB system identification and the rotor model update 
method are discussed. Then the rotor structure is presented and the locations of the uncertain elements are presented. 
Next, the FEM-model of the rotor is updated. Finally results are provided by comparing the nominal FEM-model of the 
rotor and the updated FEM-model with experimental identification data. 
 
Nomenclature 

 
B(𝒆𝒆)     black box function, error function 
DX     drive end x-axis 
𝑒𝑒𝑝𝑝     design variable, elasticity value of the p:th uncertain element 
e     design variable vector 
𝑒𝑒𝑒𝑒𝑒𝑒DX     error in the drive end x-axis (DX) 
𝑒𝑒𝑒𝑒𝑒𝑒NX     error in the non-drive end x-axis (NX) 
𝑒𝑒𝑒𝑒𝑒𝑒tot     total error 
𝑓𝑓𝑘𝑘𝑎𝑎,E     anti-resonance frequency error 
𝑓𝑓𝑘𝑘r,E     resonance frequency error 
k     index of flexible mode 
𝑘𝑘𝑡𝑡     total number of flexible modes per one axis 
n     number of design variables  
NX     non-drive end x-axis 
�̂�𝜔𝑘𝑘
a      anti-resonance frequency from experimental data 

�̃�𝜔𝑘𝑘
a      anti-resonance frequency from model 

�̂�𝜔𝑘𝑘
r      resonance frequency from experimental data 

�̃�𝜔𝑘𝑘
𝑟𝑟      resonance frequency from model 

𝑤𝑤𝑘𝑘     weight of the k:th flexible mode 
 
2. Methods 
 

In this section FEM-modeling of the rotor, AMB system identification, and the rotor model update method are 
discussed. 
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2.1 Finite element method modeling 
 

In this case study, flexible rotor is model using FEM.  FEM-methods are well developed and have been utilized in 
rotor dynamics for over two decades (Shiau and Hwang, 1989; Genta, 2005; Friswell, et al., 2010).   

Because rotors are usually axisymmetric in the xy-plane they are modeled with cylinders. Timoshenko beam theory 
is used to describe the cylinders. With Timoshenko beams, the rotational inertia is taken into account and also the shear 
deformation (Smirnov, 2012). Elasticity behavior of material and its Poisson’s ratio are necessary to take into account 
the flexibility in the Timoshenko beam theory (Lösch, 2002). 
 
2.2 AMB system identification 
 

AMBs are equipped with both sensors and actuators, it makes possible to excite the system and measure the 
response. Although in general the system works in closed-loop with controller by accepting some assumptions it is 
possible to extract accurate enough response of the open-loop part (Schweitzer and Maslen, 2009). With AMB system 
identification, the frequency response of the experimental rotor-bearing system is obtained. In this case an adaptive 
amplitude stepped sine signal is used. Amplitude of the sine wave is adjusted in order to get an acceptable response. The 
value of the position displacement (response) for the exited axis is kept between two limits in this case 20 µm and 50 
µm. If response is lower than 20 µm amplitude is increased by 20% and if response is higher than 50 µm amplitude is 
decreased by 20 % respectively. When response is between these limits, it’s acceptable, identification data is saved and 
the next frequency is selected. Amplitude range is from 50 mA to 2.5 A. Also if amplitude is less than 50 mA or greater 
than 2.5 A, identification data is saved and next frequency is selected. Three different frequency bands were used. First 
frequency band was from 1 Hz to 97.89 Hz in 12.11 Hz steps (9 points), second frequency band was from 100 Hz to 700 
Hz in 2.41 Hz steps (250 points) and the third from 703.44 Hz to 1200 Hz in 12.11 Hz steps (42 points).  

The experimental data is then used to make a parametric model of the rotor with least squares optimization. From 
this parametric model, resonance and anti-resonance frequencies are extracted. 
 
2.3 Rotor model update method 
 

FEM-modeling of the rotor has limitations, and makes only an approximation of the rotor. Modeling complex 
geometries and connections between different elements with shrink fits is difficult. Also the modeling of the electrical 
machine part is hard as there might be embedded or surface mounted permanent magnets or slits. Thus Timoshenko 
beam theory is unable to describe fully the properties of these complex elements. These complex elements are selected 
as uncertain and their properties are updated. 

Authors in (Wróblewski, et al., 2012) present a method to update the FEM-model of the rotor. In this method, the 
frequency difference in the resonance and anti-resonance frequencies between the experimental data and FEM-model 
data is minimized. Experimental data is obtained as discussed in section 2.2. From the FEM-model, some uncertain 
elements are selected and the elasticity values of these elements is updated in order to minimize the frequency difference 
in the resonance and anti-resonance frequencies between the experimental data and FEM-model of the rotor. All other 
elasticity values and the material properties remained at the fixed nominal values. 

Elasticity value of an uncertain element is denoted with design variable 𝑒𝑒𝑝𝑝. All design variables 𝑒𝑒𝑝𝑝 are combined in 
to a design variable vector e (Wróblewski, et al., 2012) 

𝒆𝒆 ∈ ℝ𝒏𝒏 so that {𝑒𝑒𝑝𝑝}𝑝𝑝=1…𝑛𝑛,          (1) 

where n is the number of design variables. The design variable vector e is used to calculate a new FEM-model of 
the rotor based on the changed elasticity values 𝑒𝑒𝑝𝑝. 

After obtaining a new model with the design variable vector e, resonance and anti-resonance frequencies are 
extracted for the selected axes and compared with the resonance and anti-resonance frequencies obtained with 
experimental data. Errors are calculated separately for resonance and anti-resonance frequencies using relative errors. 
The errors are weighted and the weight is the same for all axes but different for each flexible mode. In this case two axes 
are used, drive end x-axis (DX) and non-drive end x-axis (NX). If resonances on both DX-axis and NX-axis are used on 
the same flexible mode in the error calculation, the weight is halved for these resonances in order to prevent over-
representation of the resonance errors compared to the anti-resonance errors. Variable 𝑓𝑓𝑘𝑘𝑟𝑟,E is used to represent the 
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resonance frequency error for one axis on the k:th flexible mode, 𝑓𝑓𝑘𝑘𝑎𝑎,E is used to represent the anti-resonance frequency 
error and weights are represented with 𝑤𝑤𝑘𝑘. These errors are then calculated with (adapted from Wróblewski, et al., 2012) 

𝑓𝑓𝑘𝑘r,E = 𝑤𝑤𝑘𝑘
|�̂�𝜔𝑘𝑘

r−�̃�𝜔,𝑘𝑘
r |

�̂�𝜔𝑘𝑘
r  and            (2) 

𝑓𝑓𝑘𝑘a,E = 𝑤𝑤𝑘𝑘
|�̂�𝜔𝑘𝑘

a−�̃�𝜔𝑘𝑘
a|

�̂�𝜔𝑘𝑘
a ,            (3) 

where �̂�𝜔𝑘𝑘
r  is the experimental resonance frequency, �̃�𝜔𝑘𝑘

r  is the resonance frequency obtained from the FEM-model,  
�̂�𝜔𝑘𝑘
a  is the anti-resonance frequency from experimental data, �̃�𝜔𝑘𝑘

a  is the anti-resonance frequency obtained from the FEM-
model. These errors are then calculated for the selected axes and flexible modes. Error on DX- and NX-axis is calculated 
with 

𝑒𝑒𝑒𝑒𝑒𝑒DX = ∑ (𝑓𝑓𝑘𝑘r,E + 𝑓𝑓𝑘𝑘a,E)
𝑘𝑘t
𝑘𝑘=1  and           (4) 

𝑒𝑒𝑒𝑒𝑒𝑒NX = ∑ (𝑓𝑓𝑘𝑘r,E + 𝑓𝑓𝑘𝑘a,E)
𝑘𝑘t
𝑘𝑘=1 ,           (5) 

where 𝑘𝑘t is the total number of flexible modes per one axis. Total error value is obtained by summing the error on 
DX- and NX-axis 

𝑒𝑒𝑒𝑒𝑒𝑒tot = 𝑒𝑒𝑒𝑒𝑒𝑒DX + 𝑒𝑒𝑒𝑒𝑒𝑒NX.            (6) 
Equation (6) shows the error function we try to minimize. 
A black box function B(𝒆𝒆) is formulated to describe the process of determining the FEM-model based on value of 

the design variable vector 𝒆𝒆 and outputting the total error value. Function to be minimized is then generalized as 
(Wróblewski, et al., 2012) 

min𝒆𝒆∈ℝ𝒏𝒏 𝐵𝐵(𝒆𝒆).                        (7) 
Minimization of Eq. (7) is done with the well-known Nelder-Mead function minimization method (Nelder and 

Mead, 1965). 
 
3. Experiments and Results 
 

A five degree-of-freedom AMB PM machine with surface mounted permanent magnets was used to test the rotor 
model update method presented in section 2.3. The machine has two radial and one axial active magnetic bearing. 
Machine’s FEM-model of the rotor is shown in Fig. 1. Design variables locations 𝑒𝑒𝑝𝑝 are also shown in Fig. 1.  

Design variables (𝑒𝑒1…𝑒𝑒6) are located at the generator magnets. These generator magnets are considered as a ring 
on top of the electrical machine part of the shaft. In the real machine the length of the generator is covered by small 
magnets, which are tightened to the shaft and in practice should not apply high stiffness to the shaft. Thus, nominal 
elasticity value of these design variables was 2.2 GPa (~1% of steel elasticity 211 GPa).  

Design variables (𝑒𝑒7…𝑒𝑒12) are located at the electrical machine part of the shaft (under the generator magnets).  
Nominal elasticity value of these design variables was 211 GPa.  

Design variables (𝑒𝑒13…𝑒𝑒15) are located at the part of the shaft where impeller is connected. Nominal elasticity value 
of these design variables was assumed to be also 211 GPa.  

Design variable 𝑒𝑒16 is located at the outer part of the non-drive end AMB and design variable 𝑒𝑒17 is located at the 
outer part of the drive end AMB respectively. These outer parts of the AMBs are also considered as a ring and represent 
the laminations. Laminations are constructed from thin cut steel which is then pressed together and tightened to the shaft 
and should not also apply high stiffness to the shaft. Nominal elasticity value of these design variables was 2.1 GPa 
(~1% of steel elasticity 211 GPa). 

 
Fig. 1 FEM-model of the machine’s rotor. Design variable locations 𝑒𝑒𝑝𝑝 shown. 
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3.1 Rotor model update 
 

FEM-model of the rotor was then updated with the method shown in section 2.3. In the update routine first, second 
and third resonance and anti-resonance frequencies were used on the DX-axis and first and second resonance and anti-
resonance frequencies on the NX-axis respectively. Third resonance and anti-resonance frequencies on the NX-axis were 
not used because they were not visible in the experimental data, which is presented in Fig. 2.  First flexible modes were 
weighted with 1, second modes with 0.5 and third modes with 0.25. This weighting was used because the lower flexible 
modes are more important to fit than the higher ones and because the beam elements are good to predict the first and 
second modes. Comparison between the DX- and NX-axis resonance and anti-resonance frequencies of the experimental 
data, nominal FEM-model and the updated FEM-model is shown in Table 1. 

Table 1 shows, that the nominal model of the rotor matches the experimental data quite accurately on the first 
resonance and anti-resonance frequency, maximum absolute error being only 5.53 Hz. On the second flexible mode, the 
maximum absolute error is 54.36 Hz. The third resonance and anti-resonance frequency on the DX-axis has maximum 
absolute error of 100.61 Hz. 

The updated model has a slightly bigger error on the first flexible mode compared to the nominal model, maximum 
absolute error value being 5.81 Hz. Second resonance and anti-resonance frequency fit on the updated model has 
improved and the maximum absolute error is only 4.2 Hz. The third DX-axis flexible mode has improved the most, 
maximum absolute error being 14.61 Hz. 

Figure 2 shows the frequency response functions (FRFs) of the experimental data, nominal model and the updated 
model of the rotor on DX- and NX-axis. 

Table 1  Comparison between the resonance and anti-resonance frequencies on the DX- and NX-axis between the 
experimental data, nominal and updated FEM-model of the rotor. 

Feature of interest Experimental 
data [Hz] 

Nominal 
model [Hz] 

Absolute error 
[Hz]/(%) 

Updated model 
[Hz] 

Absolute error 
[Hz]/(%) 

1st Resonance DX/NX 237.00 231.47 5.53 / (2.32) 233.91 3.09 / (1.31) 
1st Anti-resonance DX 160.00 164.67 4.67 / (2.92) 165.81 5.81 / (3.63) 
1st Anti-resonance NX 204.00 201.54 2.46 / (1.20) 204.00 0.00 / (0.00) 

2nd Resonance DX 613.00 563.98 49.02 / (8.00) 617.20 4.20 / (0.69) 
2nd Resonance NX 616.00 563.98 52.02 / (8.45) 617.20 1.20 / (0.20) 

2nd Anti-resonance DX 543.00 501.14 41.86 / (7.71) 542.99 0.01 / (0.00) 
2nd Anti-resonance NX 601.00 546.64 54.36 / (9.05) 600.97 0.03 / (0.01) 

3rd resonance DX 1006.00 937.57 68.43 / (6.80)  1020.60 14.61 / (1.45) 
3rd Anti-resonance DX 897.00 796.39 100.61 / (11.22) 884.82 12.18 / (1.36) 
 
 

 
Fig. 2 Frequency response functions of the experimental data, nominal model and updated model of the rotor on DX- and 

NX-axis. 
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From Fig. 2 it can be seen that the updated model fits better with the experimental data. Also on the NX-axis the 
third flexible mode can’t be seen. Figure 3 shows the updated elasticity 𝑒𝑒𝑝𝑝 from the updated model and Fig. 4 shows the 
difference between the elasticity values of the nominal and updated model in percent. 

 
Figure 4 shows that elasticity values of the generator magnets (𝑒𝑒1…𝑒𝑒6) have increased from the nominal value of 

2.2 GPa. Also it can be noted that there are quite high variation (14 600%) between these updated elasticity values. One 
reason of this might be the difficulty to model the embedded permanent magnets.  

Secondly, elasticity values of the electrical machine part of the rotor shaft (𝑒𝑒7…𝑒𝑒12) other than the value of 𝑒𝑒8 have 
decreased from the nominal value of 211 GPa. The probable reason for this are the cooling channels creating slits in the 
rotor shaft. Variation of these stiffness values is 104 %.   

Thirdly, on the part of the rotor shaft where impeller is connected (𝑒𝑒13…𝑒𝑒15), these elasticity values have increased 
from the nominal value of 211 GPa. Elasticity value of 𝑒𝑒13 (227.99 GPa) is quite close to the nominal value. Reason for 
this increase is the additional stiffness from the impeller at the point of connection to the rotor shaft. Although the 
impeller is modeled as point mass it might add some stiffness when its axial length is big enough and tight fitting is 
applied. Variation of these elasticity values is 91.9 %. 

Fourthly, elasticity values of the drive and non-drive end outer part of the AMB (𝑒𝑒16 and 𝑒𝑒17) have decreased from 
the nominal value of 2.1 GPa. The nominal and the updated elasticity value of these elements is small and thus has very 
little effect on the resonance and anti-resonance frequencies. In general the lamination stacks are characterized by 
reduced stiffness. Variation of these elasticity values is 88.3 %. 

Figure 5 shows how the output of the error function B(𝒆𝒆) changes during each iteration step in the rotor model 
update method. In ideal case output of the B(𝒆𝒆) would converge to 0, but in practice it converges to some value depending 
on the starting elasticity values  𝑒𝑒𝑝𝑝.  

 
Fig. 3 Updated elasticity values 𝑒𝑒𝑝𝑝 from the updated FEM-model of the rotor. Elasticity value of 𝑒𝑒16 is 1.88 GPa and 

elasticity value of 𝑒𝑒17 is 25.29 MPa. 

 

 
Fig. 4 Elasticity difference between the nominal and updated elasticity value 𝑒𝑒𝑝𝑝 in percent. 
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From Fig. 5 it can be noted, that during the first 65 iterations, the B(𝒆𝒆) output decreases rapidly. The next major 
decrease points can be noted at around 210 followed by the point at 330 iterations. At around 500 iterations, the B(𝒆𝒆) 
output starts to converge and only minimal improvement is achieved in the later iteration steps. Running one rotor model 
update with 1000 iterations takes about 52 seconds. The runtime is dependent on how many function evaluations are 
needed during the Nelder-Mead function minimization. 
 
4. Conclusion 
 

Timoshenko beam element was used to model the flexible rotor with surface mounted permanent magnets. In 
preliminary model, some random elasticity values was picked for uncertain elements such as generator and AMB 
lamination and impeller fittings. Comparing with measurement results, preliminary analysis show significant error, 
especially in higher modes. Rotor model was updated using Nelder-Mead method with changing elasticity values which 
matches better the resonance and anti-resonance frequencies of the experimental data. Results show that the rotor model 
is more sensitive in generator magnets properties. In some case, the updated elasticity is 150 times higher than original 
estimation. Another interesting point in analysis in 𝑒𝑒15 where the impeller is connected to the shaft and 100% higher 
elasticity is needed for updated model. It is also important to consider the difference between AMB laminations in D-
end and ND-end where the D-end lamination illustrates need to update with original. The reason can be the mass 
properties of the whole shaft which is near to D-end bearing because of the impeller attachment. 

In general, the updated model is more accurate in first three natural frequencies compared with experimental data’s 
and the total model fit of the updated model was 56.57 % compared to the nominal fit of 30.63%. 
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