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Abstract
This paper deals with magnetic modeling of a bearingless synchronous reluctance motor. The motor under consid-
eration includes two separate sets of three-phase windings, one for torque production and the other one for radial-
force production. This paper demonstrates by means of finite-element analysis, that it is unrealistic to assume
the two three-phase windings to be decoupled from one another. Instead, it is shown that especially the torque-
producing winding currents affect to the operation of the radial-force producing winding. A simple nine-parameter
explicit-function based magnetic model is proposed to model the cross-saturation between the two winding sets.
The effectiveness of the proposed magnetic model is demonstrated by applying it together with model-based torque
and radial-force controllers.
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1. Introduction

In recent years, bearingless machines have received increasing attention as an alternative to conventional mechanical
bearings, especially in high-speed applications (Mitterhofer et al., 2014). Bearingless drives incorporate the functions of
active magnetic bearings and electrical machine in one unit, which reduces the size, complexity and price of the system
(Chiba et al., 1994). Several motor topologies have been proposed in the literature to be used as bearingless motors,
e.g. (Chiba et al., 1994; Gruber et al., 2009; Nussbaumer et al., 2011; Asama et al., 2013). Particularly in lower speed
and higher power applications, the bearingless synchronous reluctance motor (BSyRM) is an attractive alternative. The
advantages of BSyRM include, e.g., that it neither needs the permanent magnets (PMs) placed in the rotor, like the PM
machines do, nor it produces additional losses because of the rotor currents, like the induction machines do. However, the
synchronous reluctance motors are often operated with relatively high currents, which means that the magnetic circuit of
the motor is saturated.

The BSyRM considered in this paper includes two separate sets of three-phase windings. One winding set is for
production of the shaft torque and is referred to as a main winding. The second winding set is for production of the radial
force for stable levitation of the rotor and is referred to as a suspension winding. For independent and rapid production of
the required torque and force, the performance of the current (or flux linkage) control loop is especially important since it
has a direct influence on the overall stability of the system. Moreover, the current-control loop sets the dynamic limitations
for the outer control loops, i.e., the speed-control loop and the radial-position control loop. Thus, it is important to know
the magnetic model of the motor in detail to be able to establish accurate model-based torque and force-control loops
(Harnefors and Nee, 1998; Briz et al., 1999; Hinkkanen et al., 2016). In an ideal case, the dynamics of the two three-
phase windings are decoupled, when the rotor is centric (Chiba et al., 1994). This assumption is used, e.g., in study by
(Xu et al., 2013), where the torque and force productions are separately designed. However, it is demonstrated by several
studies that heavy cross-saturation appear in conventional SyRMs, e.g. (Yamamoto et al., 2007). Thus, it is realistic to
assume that similar cross-saturation behaviour appear also in BSyRMs, meaning that the two windings may be coupled,
even if the rotor is centric.
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The main contributions of this paper can be summarized as follows: 1) The saturation characteristics of BSyRM
are analyzed in more detail than in previous studies, e.g. (Michioka et al., 1996), including self-saturation and cross-
saturation; 2) a nine-parameter explicit function is proposed to model the cross-saturation between the main winding and
the additional winding; 3) Comparison between explicit-function based and constant-parameter current-controller designs
are carried out by means of simulations.

2. System Model

As depicted in Fig. 1, the studied BSyRM has a 4-pole multi-flux-barrier rotor (Mukherjee et al., 2015). A 4-pole
main winding for the torque production and a 2-pole suspension winding for the radial-force production are sinusoidally
distributed in the stator. In the following, the system model is analyzed in synchronous coordinates (rotating at twice the
shaft speed ωM).

The voltage equations of the main winding (marked with subscript m) and the suspension winding (marked with
subscript s) are (Chiba et al., 1994)

dψm

dt
= um − Rmim − 2ωM Jψm,

dψs

dt
= us − Rsis − ωM Jψs (1)

respectively, where J =
�

0 −1
1 0

�
and the voltage vectors are defined as um =

�
umd umq

�T
and us =

�
usd usq

�T
. The current

vectors and the flux-linkage vectors are defined similarly. The resistances of the windings are Rm and Rs, respectively.
The angular speed of the shaft is defined as ωM = dϑM/dt, where ϑM is the angular position of the shaft.

With linear magnetics, the flux linkages of the main winding ψm and the suspension winding ψs can be represented
in matrix format (Chiba et al., 1994):
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where Ld, Lq, Ls are inductances and M′d, M′q are radial-force constants. The rotor displacements in rotating coordinates
are denoted as i and j, cf. Figs. 1(a) and 1(c). It can be noted that the cross coupling between the main winding and the
suspension winding exists only when i and j are nonzero, i.e., when the rotor is not centric.

3. FEA Results and Magnetic Model

It has been demonstrated in several studies, that it is unrealistic to assume a linear magnetic circuit in SyRMs and
BSyRMs (Michioka et al., 1996; Yamamoto et al., 2007). Thus, instead of using (2), the flux linkages are modeled as
a function of currents, i.e. ψ = ψ(i), in the following section. The calculation is based on static finite-element analysis
(FEA) in pre-selected operating points and both the windings are current supplied in FEA. The rotor is assumed to be
centric and the angle of the rotor is kept zero in every operating points, cf. Figs. 1(a) and 1(c). However, the current
angles are always varied between different FE solutions. As an example, Figs. 1(a) and 1(c) show the pre-defined current
vectors im and is for two operating points and Figs. 1(b) and 1(d) show the corresponding magnetic-field solutions. When
the no-load operating point [Fig. 1(a)] is compared with the loaded one [Fig. 1(c)], it can be seen that the saturation state
of the motor is different. Furthermore, Fig. 1(a) clearly demonstrates that the flux density in the airgap is unbalanced,
which means that the radial force is produced. The flux linkages ψm and ψs of both windings are calculated from the
magnetic-field solution by using the post-processing algorithms of FE software. In addition to the flux linkages, the FE
software computes values of the electromagnetic torque TM and the radial-force components Fx and Fy.

The main-winding current amplitude is varied between 2.5 A and 45.9 A (peak-to-peak) and the suspension-winding
current amplitude is varied between 0.35 A and 3.18 A (peak-to-peak). Based on the FEA results, the maximum torque
of the motor is 29 Nm and the maximum amplitude of the radial force is 2000 N within these current regions.

3.1. Flux Linkages as Function of Main-Winding Current
Based on the FEA results, it was found out that the main-winding d-axis inductance Ld remains almost constant

(within 6% variation) throughout the whole operating region. As an example, Fig. 2(a) shows the main-winding d-axis
flux linkage ψmd as a function of imd and imq. It can be seen that practically neither the self-saturation nor the cross-
saturation exist, meaning that Ld can be assumed to be constant. On the other hand, there is clear self-saturation between
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(a) (b)

(c) (d)

Fig. 1 (a), (c): Current vectors im and is together with radial-force vector for two operating points; and (b), (d):
the corresponding magnetic-field solutions computed with FE software. The stationary coordinates of the
main and suspension windings are marked with (α, β) and (x, y), respectively. Similarly, the rotating
coordinates of the main and suspension windings are marked with (d, q) and (i, j), respectively.

imq and ψmq, as demonstrated in Fig. 2(b). Moreover, it was found out that there is also clear cross-saturation between
the main-winding q-axis current component imq and the suspension-winding flux linkages ψsd and ψsq, meaning that the
suspension-winding inductance Ls cannot be considered constant. Fig. 2(c) demonstrates this phenomenon.

3.2. Flux Linkages as Function of Suspension-Winding Current
Based on the FEA results, it was found out that the neither the self-saturation nor the cross-saturation exist between

the suspension-winding currents and suspension-winding flux linkages, as demonstrated in Fig. 3(c). Thus, it can be
assumed that the suspension-winding inductance Ls depend only on the main-winding currents. Furthermore, it was found
out that the cross-saturation between the suspension-winding currents and the main-winding flux linkages is minimal, as
demonstrated in Figs. 3(a) and 3(b). This means that it can be assumed that the main-winding inductances Ld and Lq do
not depend on the the suspension-winding currents.

3.3. Force Constants as Function of Currents
The radial-force vector is defined in stationary xy coordinates as (Michioka et al., 1996)

Fs =

⎡
⎢⎢⎢⎢⎣
Fx

Fy

⎤
⎥⎥⎥⎥⎦ = eϑM J

⎡
⎢⎢⎢⎢⎣
M′dimd M′qimq

M′qimq −M′dimd

⎤
⎥⎥⎥⎥⎦ is (3)

Because all the current components as well as the radial-force components are known after each FE simulation, the radial-
force constants can be calculated as function of currents in each operating point using (3). Based on the calculated results,
it was found out that the radial-force constants M′d and M′q highly depend on the main-winding currents. It was also found
out that the M′d dominates the radial-force production. Variation in the q-axis force-constant M′q has only minor effects to
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Fig. 2 Flux linkages as function of main-winding currents, calculated with the magnetic model (4): (a)
ψmd(imd, imq); (b) ψmq(imd, imq); and (c) ψsq(imd, imq). The FEA data points are shown as black crosses.

(a) (b) (c)

Fig. 3 Flux linkages as function of suspension-winding currents: (a) ψmd(isd, isq) is obtained from FEA; (b)
ψmq(isd, isq) is obtained from FEA; and (c) ψsd(isd, isq) is obtained from the magnetic model (4). The
FEA data points are shown as black crosses.

the produced radial force.

3.4. Explicit-Function Based Magnetic Model
Based on the observations made in the previous three sections, the following magnetic model is proposed for the

BSyRM

ψmd(imd) = Ldimd, ψmq(imq) = Lq(imq)imq, ψsd(imq, isd) = Ls(imq)isd, ψsq(imq, isq) = Ls(imq)isq

Lq(imq) = Lq,0 +
a

1 + bi2mq
, Ls(imq) = Ls,0 −

ci2mq

1 + di2mq
, M′d(imq) = Md,0 −

ei2mq

1 + f i2mq
(4)

where Lq,0, Ls,0, a, b, c, d, e, and f are the coefficients of the inductance functions. Both the self-saturation in the main-
winding q-axis flux linkage as well as the cross-saturation in the suspension-winding flux linkages are modeled with
the explicit functions proposed in (Yamamoto et al., 2007). Moreover, the same explicit function is applied to model the
dependency of force constant M′d on imq. The force constant M′q is assumed to be constant throughout the operating region.
When the coefficients of the explicit function are fitted to the FEA results, then the corresponding numerical values of the
magnetic model are given in Table 1. The constant parameters are Ld = 15 mH and M′q = 0.66 H/m.

As an example, Figs. 2(a), 2(b), and 2(c) show the flux-linkage maps of ψmd(imd), ψmq(imq), and ψsq(imq, isq) as
function of the main-winding currents, when isd = isq = 0.75 A. The magnetic-model parameters are given in Table 1.
Fig. 3(c) shows a flux-linkage map of ψsd(imq, isd) as function of suspension-winding currents, when imd = 12.5 A and
imq = 40 A. Fig. 4 shows a force-constant map of M′d(imq) as function of main-winding currents, when isd = isq = 0.75 A.
Based on both the flux-linkage maps and the force-constant map, it can be concluded that the proposed magnetic model
agrees well with the values obtained from FEA.
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Fig. 4 Force constant M′d(imd, imq) as function of main-winding currents, calculated with the magnetic model (4).
The FEA data points are shown as black crosses.

4. Application Example: Model-Based Torque and Radial-Force Control

In this section, the proposed explicit functions are applied to design two-degrees-of-freedom (2DOF) PI-type torque
and radial-force control systems for the BSyRM. It is worth keeping in mind that us, is, and ψs in (1) are varying si-
nusoidally, with an angular frequency of ωM, when the motor shaft is rotating and the radial force is produced. Thus,
us, is, and ψs are first transformed into their own synchronous coordinates for the suspension-winding current controller.
Moreover, ideal voltage sources are assumed when designing the controllers, i.e., um = um,ref and us = us,ref. The voltages
of the main and suspension windings (in their own synchronous coordinates) are

um,ref = Kp,m(im,ref − im) + Ki,mxI,m − Ra,mim + 2ωM JLmim (5)

us,ref = Kp,s(is,ref − is) + Ki,sxI,s − Ra,sis + 2ωM JLsis (6)

respectively (Harnefors and Nee, 1998), where the integral states are further defined as

dxI,m

dt
= im,ref − im,

dxI,s

dt
= is,ref − is (7)

The reference-current vectors are denoted as im,ref and is,ref. The controller matrices can be selected based on internal-
model-control (IMC) principle

Kp,m = αmLm, Ki,m = α
2
mLm, Ra,m = Kp,m − RmI (8)

Kp,s = αsLs, Ki,s = α
2
s Ls, Ra,s = Kp,s − RsI (9)

where αm represents the bandwidth of the torque-control loop and αs the bandwidth of the radial-force-control loop
(Harnefors and Nee, 1998). A 2 × 2 identity matrix is denoted by I.

4.1. Reference Calculation
The torque of the motor can be defined as

TM = 3[ψmdimq − ψmq(imq)imd] (10)

When the motor-torque reference TM,ref is known, then the current references imd,ref and imq,ref can be solved from (10),
e.g., by applying the maximum-torque-per-ampere (MTPA) principle. Alternatively, the motor may be operated with

Table 1 Explicit-Function Coefficients

Parameter Lq,0 [mH] a [mH] b [1/A2] Ls,0 [mH] c [mH/A2] d [1/A2] Md,0 [H/m] e [H/(m · A2)] f [1/A2]
Value 2.7 6 0.006 37.3 1.3 0.07 31.28 0.18 0.026
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(a) (b)

(c) (d)

Fig. 5 Simulation result with constant magnetic-model parameters and a stand-still rotor: (a) motor torque (the
first subplot) and the current components of the main winding (the second subplot); and (b) radial-force
vector components (the first subplot) and the current components of the suspension winding (the second
subplot). Simulation result with constant magnetic-model parameters at 3000-r/min rotor speed: (c) motor
torque (the first subplot) and the current components of the main winding (the second subplot); and (d)
radial-force vector components (the first subplot) and the current components of the suspension winding
(the second subplot).

constant imd,ref and imq,ref is then calculated from (10). Furthermore, when the reference-force vector in xy coordinates
Fs

ref is known, then the suspension winding current references isd,ref and isq,ref can be solved from (3).
In the following simulations, the motor is operated in the torque-control mode (i.e., the torque reference is directly

defined by the user). The suspension winding is operated in the force-control mode, meaning that the reference-force
vector is directly defined by the user.

5. Time-Domain Simulations

The torque and the radial-force control systems, designed in previous section, are evaluated by means of time-domain
simulations with two different tests. In the first test, the parameters of the magnetic model, used together with the model-
based control systems, are assumed to be constant: Ld = 15 mH, Lq = 4.3 mH, Ls = 21.3 mH, M′d = 25.6 H/m, and
M′q = 0.66 H/m. In the second test, the proposed explicit-function based magnetic model is used together with the model-
based control systems and the coefficients of the magnetic model are given in Table 1. The resistances of the main and
suspension windings are Rm = 0.1 Ω and Rs = 2.94 Ω, respectively. The bandwidths of the torque and force-control loops
are αm = αs = 3000 rad/s, respectively. Both the torque controller and the radial-force controller are implemented in the
continuous-time domain in these simulations.
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(a) (b)

(c) (d)

Fig. 6 Simulation result with explicit-function based magnetic-model parameters and a stand-still rotor: (a) motor
torque (the first subplot) and the current components of the main winding (the second subplot); and (b)
radial-force vector components (the first subplot) and the current components of the suspension winding
(the second subplot). Simulation result with explicit-function based magnetic-model parameters at 3000-
r/min rotor speed: (c) motor torque (the first subplot) and the current components of the main winding (the
second subplot); and (d) radial-force vector components (the first subplot) and the current components of
the suspension winding (the second subplot).

The following sequence is tested in the simulations with a stand-still rotor and at the rotor speed of 3000 r/min:
1) the main-winding d-axis current reference imd,ref is stepped from 0 to 15 A @ 0 seconds; 2) the torque reference
TM,ref is stepped from 0 to 15 Nm @ 0.2 seconds and back to 0 Nm @ 0.4 seconds; 3) a radial-force reference step of

Fs
ref =

[
400 −200

]T
N is applied at 0.3 seconds.

5.1. Plant Model
The plant model consists of the voltage equations (1), which are integrated in the continuous-time domain to obtain

the flux linkages of both windings. Then, static mappings between the flux linkages and each current component are
formed based on the FEA results as a form of four-dimensional look-up-tables (4D-LUTs). Four 4D-LUTs are required
to obtain all the current components from the flux linkages. Furthermore, two additional 4D-LUTs are formed, based on
the FEA results, to map the resulting current components with the radial-force components.

5.2. Results
Fig. 5 shows the simulation results, when the control system is based on the constant magnetic-model parameters.

Figs. 5(a) and 5(b) show the motor torque, the radial-force components, and the corresponding current components for a
stand-still rotor. Figs. 5(c) and 5(d) show the corresponding operation at the 3000-r/min rotor speed.
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Fig. 6 shows the simulation results, when the control system is based on the proposed magnetic-model (4). Figs. 6(a)
and 6(b) show the motor torque, the radial-force components, and the corresponding current components for a stand-still
rotor. Figs. 6(c) and 6(d) show the corresponding operation at the 3000-r/min angular speed.

By comparing Figs. 5 and 6, it can be seen that the accuracies of both the torque-control loop and the radial-force
control loop are clearly improved, when the control system is based on the proposed magnetic model instead of constant
parameters. However, the dynamic performances of both the control loops are satisfactory even, if the control system is
only based on the constant parameters.

6. Conclusions

The saturation characteristics of a double-winding BSyRM were analyzed in this paper by means of finite-element
simulations. It was found out that because of the wider air gap of the motor, some of the electrical parameters of the system
remain almost constant throughout reasonable operating region. However, cross-saturation between the main winding and
the additional winding are clearly present even though the rotor is centric. Furthermore, it was found out that the force
constants are highly dependent on the main-winding current. A simple nine-parameter magnetic model was proposed to
model these non-linearities. The effectiveness of the proposed magnetic model was demonstrated by successfully applying
it together with model-based torque and radial-force controllers.
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