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Abstract 
This paper deals with optimal controller design for active magnetic bearing (AMB) systems for which 
nonlinear rotordynamic behavior is evident, and so vibration predicted by operating point linearization differs 
substantially to that which actually occurs. Nonlinear H-infinity control theory is applied with a rotordynamic 
model involving nonlinear stiffness and/or damping terms. The associated Hamilton-Jacobi-Isaacs (HJI) 
equation is formulated and solved to obtain a state feedback control law achieving specified vibration 
attenuation performance in terms of the peak L2 gain of the nonlinear system. The method is applied in case 
study to a flexible rotor/AMB system that exhibits nonlinear stiffness properties owing to rotor interaction with 
a clearance bearing. Simulations are performed to quantify RMS vibration due to harmonic disturbances and 
the results compared with the norm-bound values embedded in the HJI equations. A feedback controller design 
method is then presented that is similar in approach to the standard loop-shaping/mixed-sensitivity methods 
used for linear systems, and involves augmenting the system model with weighting transfer functions. 
Experiments are undertaken to compare controller performance for design based on nonlinear and linearized 
models. The results highlight the shortcomings of applying linear optimal control methods with rotor systems 
exhibiting nonlinear stiffness properties as large amplitude vibration and loss of rotordynamic stability can 
occur. Application of the described nonlinear H-infinity control method is shown to overcome these problems, 
albeit at the expense of vibration attenuation performance for operation in linear regimes. 

Keywords : rotor vibration, magnetic bearings, H-infinity control, nonlinear dynamics 

 
1. Introduction 

 
The successful application of modern optimal and robust control methodologies with AMB/rotor systems has been 

widely reported. For frequency domain analysis and design, industry standards have now been established that fit well 
within the framework of linear H-infinity control (Schweitzer and Maslen, 2010). In this framework, specifications for 
rotor vibration attenuation are defined using system norm-bound criteria, which can directly account for external 
disturbances having specified sources and spectral characteristics, e.g. sensor noise, rotor unbalance and external 
motions. The limitations of a linear design may be exposed, however, when large amplitude vibration occurs, or when 
the rotor equilibrium position varies significantly during operation, as nonlinear effects can then become important.  

Previous works on active control of vibration in nonlinear rotordynamic systems cover quite diverse aspects. 
Unbalance compensation for a single-disk rotor with nonlinear supports was considered by Inoue et al. (2009). Control 
of synchronous vibration for a rotor supported by magnetic bearings when contacting with clearance bearings was 
investigated by Cole and Keogh (2003) and Chamroon et al., (2014), while active clearance bearings have also been 
proposed for a similar purpose in (Cade et al., 2010). In other work, destabilizing nonlinear effects have been accounted 
for in controller designs via linear approximations (Simon and Flowers, 2008, El-Shafai and Dimitri 2010, Karkoub, 
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2011). Nonlinear H-infinity control methods have been applied previously with magnetic bearings to deal with 
nonlinear properties of the AMBs (rather than rotordynamics) as, for example, by Sinha and Pechov (2005).  

According to standard definitions, an optimal H-infinity controller for a nonlinear system achieves a minimum 
value for the peak RMS gain, i.e. minimizes the induced L2 to L2 norm of the closed loop system. The solution can be 
found by solving a partial differential equation known as the Hamilton-Jacobi-Isaacs (HJI) equation (Van der Schaft, 
1992, Isidori and Alstofi 1992). This is usually a difficult task, due to nonlinearity of the HJI equation and 
non-uniqueness of the solution in the suboptimal case. It is shown here that, for rotordynamic models incorporating 
nonlinear stiffness and/or damping effects, a solution to the HJI equation (in inequality form) can be obtained by 
numerical optimization if a certain form of Lyapunov function is adopted. The main aim of this paper is to investigate 
whether the obtained solutions are practically useful for enhancing vibration suppression qualities of AMB control for 
rotors that exhibit significant nonlinear dynamic behavior.  

 
2. Nonlinear rotordynamic model 
 

Vibration of a nonlinear rotordynamic system subject to disturbance forces 𝑑𝑑 and magnetic bearing control 
forces 𝑢𝑢, applied directly to the rotor, may be described by a matrix equation of the form  

𝑀𝑀𝑠̈𝑠 + 𝐺𝐺𝑠̇𝑠 + 𝐾𝐾𝐾𝐾 = 𝐸𝐸𝑓𝑓𝑓𝑓(𝑠𝑠, 𝑠̇𝑠) + 𝐸𝐸𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑑𝑑𝑑𝑑 (1) 

The vector 𝑓𝑓 comprises a set of internal forces that vary as nonlinear functions of a subset of velocity and/or 
displacement states, which will be denoted 𝑧𝑧. Defining the state vector 𝑥𝑥𝑇𝑇 = [𝑠𝑠𝑇𝑇 𝑠̇𝑠𝑇𝑇], a state space representation is 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝑓𝑓𝑓𝑓(𝑧𝑧) + 𝐵𝐵𝑑𝑑𝑑𝑑 + 𝐵𝐵𝑢𝑢𝑢𝑢 (2) 

𝑧𝑧 = 𝐶𝐶𝐶𝐶 (3) 

𝐴𝐴 = [ 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐺𝐺] , 𝐵𝐵𝑢𝑢 = [ 0

𝑀𝑀−1𝐸𝐸𝑢𝑢
] , 𝐵𝐵𝑑𝑑 = [ 0

𝑀𝑀−1𝐸𝐸𝑑𝑑
] , 𝐵𝐵𝑓𝑓 = [ 0

𝑀𝑀−1𝐸𝐸𝑓𝑓
]  (4) 

A linearized model for the equilibrium point 𝑥𝑥 = 0 is given by Eq. (2) with 𝑓𝑓 = 0. For the purpose of controller 
design, it is appropriate to further define a set of output variables for inclusion in a cost function. These may be 
expressed as a linear function of 𝑥𝑥 and 𝑢𝑢: 

𝑦𝑦 = 𝐶𝐶𝑦𝑦𝑥𝑥 + 𝐷𝐷𝑢𝑢𝑢𝑢 (5) 
 
3. Existence of H-infinity controllers 
 

The peak L2 gain for a nonlinear system described by Eqs (2)-(5) may be defined as  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿2 = sup𝑑𝑑≠0
‖𝑦𝑦‖2
‖𝑑𝑑‖2

 (6) 

where ‖. ‖2 denotes the signal L2-norm: ‖𝑦𝑦‖2 = (∫ 𝑦𝑦(𝑡𝑡)2𝑑𝑑𝑑𝑑∞
−∞ )

1
2. It is well known that for linear systems the peak L2 

gain is a time-domain version of the H-infinity norm. According to standard theory, under the assumptions 𝐷𝐷𝑢𝑢
𝑇𝑇𝐶𝐶𝑦𝑦 = 0 

and 𝐷𝐷𝑢𝑢
𝑇𝑇𝐷𝐷𝑢𝑢 = 𝐼𝐼, if there exists a positive semi-definite function 𝑉𝑉(𝑥𝑥) ≥ 0 with bounded Jacobian 𝑉𝑉𝑥𝑥(𝑥𝑥) = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 

satisfying the Hamiltonian-Jacobi-Isaacs equation given by 

𝑉𝑉𝑥𝑥 (𝐴𝐴𝐴𝐴 + 𝐵𝐵𝑓𝑓𝑓𝑓(𝑧𝑧)) + 𝑥𝑥𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 + 1
4 𝛾𝛾−2𝑉𝑉𝑥𝑥𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑

𝑇𝑇𝑉𝑉𝑥𝑥
𝑇𝑇 − 1

4 𝑉𝑉𝑥𝑥𝐵𝐵𝑢𝑢𝐵𝐵𝑢𝑢
𝑇𝑇𝑉𝑉𝑥𝑥

𝑇𝑇 = 0 (7) 

then, the control law 𝑢𝑢 = −1
2𝐵𝐵𝑢𝑢

𝑇𝑇𝑉𝑉𝑥𝑥
𝑇𝑇 renders the controlled system stable with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿2 < 𝛾𝛾 (Isidori and Astolfi, 

1992). In general, it is difficult to solve Eq. (7) unless some further assumptions are made about the form of 𝑉𝑉(𝑥𝑥). 
Although methods based on multi-dimensional Taylor series expansions can be used (Sinha and Pechev, 2004, 
Abu-Khalaf et al., 2006), the numerical complexity for high order systems is prohibitive. In this study we adopt a 
quadratic Lyapunov function with additional higher order terms in the nonlinear variables 𝑧𝑧 only: 

𝑉𝑉(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝑃𝑃𝑃𝑃 + 2𝑔𝑔(𝑧𝑧) (8) 

where 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0. Noting that 𝑉𝑉𝑥𝑥 = 2𝑥𝑥𝑇𝑇𝑃𝑃 + 2 𝑔𝑔𝑧𝑧𝐶𝐶 where 𝑔𝑔𝑧𝑧 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, the HJI equation then becomes 
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𝑥𝑥𝑇𝑇(𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝐶𝐶𝑦𝑦
𝑇𝑇𝐶𝐶𝑦𝑦)𝑥𝑥 + 𝛾𝛾−2𝑥𝑥𝑇𝑇𝑃𝑃𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑

𝑇𝑇𝑃𝑃𝑃𝑃 − 𝑥𝑥𝑇𝑇𝑃𝑃𝐵𝐵𝑢𝑢𝐵𝐵𝑢𝑢
𝑇𝑇𝑃𝑃𝑃𝑃 + 2𝑔𝑔𝑧𝑧(𝑧𝑧)𝐶𝐶𝐵𝐵𝑓𝑓𝑓𝑓(𝑧𝑧) + 2(𝑓𝑓(𝑧𝑧)𝑇𝑇𝐵𝐵𝑓𝑓

𝑇𝑇𝑃𝑃 + 𝑔𝑔𝑧𝑧(𝑧𝑧)𝐶𝐶𝐶𝐶)𝑥𝑥 = 0 (9) 

Without any assumptions about the form of 𝑓𝑓(𝑧𝑧), the first three quadratic terms in 𝑥𝑥 and remaining nonlinear terms 
must sum independently to zero. This requires that 𝐶𝐶𝐵𝐵𝑓𝑓 = 0 and 𝑓𝑓(𝑧𝑧)𝑇𝑇𝐵𝐵𝑓𝑓

𝑇𝑇𝑃𝑃 + 𝑔𝑔𝑧𝑧(𝑧𝑧)𝐶𝐶𝐶𝐶 = [0]. By choosing 

 𝑔𝑔𝑧𝑧(𝑧𝑧) =  𝑓𝑓(𝑧𝑧)𝑇𝑇Σ (10) 

equation (9) will hold if Σ and 𝑃𝑃 satisfy 

𝐵𝐵𝑓𝑓
𝑇𝑇𝑃𝑃 + Σ𝐶𝐶𝐶𝐶 = [0] (11) 

𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝐶𝐶𝑦𝑦
𝑇𝑇𝐶𝐶𝑦𝑦 + 𝛾𝛾−2𝑃𝑃𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑

𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐵𝐵𝑢𝑢𝐵𝐵𝑢𝑢
𝑇𝑇𝑃𝑃 = [0]  (12) 

A feasible solution (𝑃𝑃, Σ) to these equations provides the control law 

𝑢𝑢 = −1
2𝐵𝐵𝑢𝑢

𝑇𝑇𝑉𝑉𝑥𝑥𝑇𝑇 = −𝐵𝐵𝑢𝑢
𝑇𝑇𝑃𝑃𝑃𝑃 − 𝐵𝐵𝑢𝑢

𝑇𝑇𝐶𝐶𝑇𝑇Σ𝑇𝑇𝑓𝑓(𝑧𝑧). (13) 

To obtain a less conservative result, the constraint Eq. (11) can be relaxed if 𝑓𝑓(𝑧𝑧) is a scalar mapping and 
satisfies a sector bound condition: 

𝑓𝑓(𝑧𝑧)(𝑓𝑓(𝑧𝑧) − 𝜅̅𝜅𝑧𝑧) ≤ 0   ⇔       𝑓𝑓(𝑧𝑧) = 𝜅𝜅(𝑧𝑧)𝑧𝑧,   0 ≤ 𝜅𝜅(𝑧𝑧) ≤ 𝜅̅𝜅   (14) 

In this case, it is possible to reformulate the gain-bound condition Eq. (9) as a linear matrix inequality (LMI) that can 
be solved numerically. Given that Eq. (10) must still be satisfied, a sufficient condition for a solution to Eq. (9) to exist  
is that there exists 𝑃𝑃, Σ such that 

𝑥𝑥𝑇𝑇(𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝐶𝐶𝑦𝑦
𝑇𝑇𝐶𝐶𝑦𝑦 + 𝛾𝛾−2𝑃𝑃𝐵𝐵𝑑𝑑𝐵𝐵𝑑𝑑

𝑇𝑇𝑃𝑃 − 𝑃𝑃𝐵𝐵𝑢𝑢𝐵𝐵𝑢𝑢
𝑇𝑇𝑃𝑃)𝑥𝑥 + 2𝑓𝑓TΣ𝐶𝐶𝐵𝐵𝑓𝑓𝑓𝑓 + 2𝑓𝑓𝑇𝑇(𝐵𝐵𝑓𝑓

𝑇𝑇𝑃𝑃 + Σ𝐶𝐶𝐶𝐶)𝑥𝑥 < 0 (15) 

Equation (15) will hold for all scalar 𝑓𝑓(𝑧𝑧) satisfying Eq. (14) if there exists 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0, Σ and 𝜇𝜇 > 0 satisfying the 
following matrix inequality, as obtained by application of the so-called S-procedure (Boyd et al., 1994): 

𝐹𝐹(𝑃𝑃, Σ, 𝜇𝜇) =

[
 
 
 
 𝐴𝐴

𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 − 𝑃𝑃𝐵𝐵𝑢𝑢𝐵𝐵𝑢𝑢
𝑇𝑇𝑃𝑃 𝑃𝑃𝐵𝐵𝑓𝑓 + 𝐴𝐴𝑇𝑇𝐶𝐶𝑇𝑇Σ𝑇𝑇 + 𝐶𝐶𝑇𝑇𝜅̅𝜅𝜇𝜇 𝑃𝑃𝐵𝐵𝑑𝑑 𝐶𝐶𝑦𝑦

𝑇𝑇

𝐵𝐵𝑓𝑓
𝑇𝑇𝑃𝑃 + Σ𝐶𝐶𝐶𝐶 + 𝜇𝜇𝜅̅𝜅𝐶𝐶 −2𝜇𝜇 + Σ𝐶𝐶𝐵𝐵𝑓𝑓 + 𝐵𝐵𝑓𝑓

𝑇𝑇𝐶𝐶𝑇𝑇Σ𝑇𝑇 0 0
𝐵𝐵𝑑𝑑

𝑇𝑇𝑃𝑃 0 −𝛾𝛾2𝐼𝐼 0
𝐶𝐶𝑦𝑦 0 0 −𝐼𝐼]

 
 
 
 
< 0 (16) 

To ensure 𝑉𝑉(𝑥𝑥) ≥ 0 we must also impose 𝑃𝑃 > 0, Σ ≥ 0. The controller is given by Eq. (13). 
 
4. Vibration analysis and controller design for a flexible rotor 
 
4.1 System description 

The described nonlinear H-infinity control approach was applied to the experimental rotor-AMB system shown in 
Fig 1. The rotor is constructed from a steel shaft of length 700 mm and diameter 10 mm supported by ball bearings at 
each end. Two disks are fixed on the shaft. Disk 1 has mass 0.36 kg and forms the hub of the AMB. A backup bearing 
with radial clearance of 1 mm is also installed within the AMB. Disk 2, which has a mass 1.12 kg, is surrounded by a 
clearance ring which is compliantly supported by a force-sensing unit (stator unit). The radial clearance is 0.4 mm. 
Pairs of non-contact probes measure lateral displacement in orthogonal directions at both disks. The AMB was initially 
operated under PD feedback control. A linearized model was identified from frequency response measurements, which 
captures small-amplitude vibration behavior. Large amplitude vibration leads to contact interaction between disk 2 and 
the surrounding ring and this contributes a nonlinear stiffness effect on rotordynamic behavior. For a nominal rotational 
speed range of 0-200 rad/s, which includes the first critical speed, coupling between x-z and y-z planes is negligible. 
Models of rotor vibration under PD feedback control may be defined separately for each transverse plane in the form 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵2𝑓𝑓(𝑧𝑧) + 𝐵𝐵1𝑑𝑑 + 𝐵𝐵1𝑢𝑢 (17) 

𝑦𝑦 = 𝐶𝐶1𝑥𝑥,    𝑧𝑧 = 𝐶𝐶2𝑥𝑥 (18) 

Subscripts here identify input/output matrices pertaining to disks 1 and 2: the disturbance force 𝑑𝑑 and control 
input 𝑢𝑢 both act at disk 1. Note that the control force 𝑢𝑢 acts in addition to the feedback component from the PD 
controller, which is already accounted for in the model. The system output 𝑦𝑦 is the rotor displacement at disk 1. 
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(a)  (b)  

Fig. 1  Experimental flexible rotor-AMB system used in case study: (a) CAD model with cross section (b) photograph 

 

Fig. 2 L2 gain calculated from simulation runs with harmonic forcing: results are shown for a selection of values for the 
non-linear parameter 𝛽𝛽. The peak L2 gain-bound obtained by solving LMI problem Eq. (16) is also shown 
 
The state vector 𝑥𝑥 has four states which capture the first two natural modes of vibration of the rotor. This model has 
the form of Eqs (2)-(5) and so the control synthesis LMI Eq. (16) can be readily applied. Note that full state 
information is required to implement the controller and this is made possible by measurement of displacement at both 
disks, from which velocity states are calculated using a filtered derivative method. 
 
4.2 Nonlinear vibration analysis via LMIs 

Numerical simulations were performed using the model of the PD-controlled system with harmonic forcing at 
disk 1: 𝑑𝑑 = 𝑚𝑚𝑒𝑒Ω2 cos Ω𝑡𝑡. The exact characteristics of the rotor interaction with the clearance ring are uncertain and so, 
for theoretical investigation, a cubic nonlinear stiffness was adopted 𝑓𝑓(𝑧𝑧) = 𝛽𝛽 𝑧𝑧3. Time-step integration of Eq. (18) 
(with 𝑢𝑢 = 0) was performed for a range of values of forcing frequency Ω and nonlinear parameter 𝛽𝛽. For each 
simulation run the L2 gain was calculated as ‖𝑦𝑦‖2/‖𝑑𝑑‖2. The results are shown as scattered points in Fig. 2. For the 
linear case (𝛽𝛽 = 0) the two resonant peaks are clearly evident and are associated with the first and second natural 
modes for lateral vibration of the flexible rotor. For larger values of 𝛽𝛽, constraining effects due to the nonlinear 
stiffness tend to reduce the amplitude of vibration but also extend the frequency range for resonance for the first natural 
mode. There are large disparities between the magnitude of vibration occurring in the linear and nonlinear cases for a 
frequency range 140-250 rad/s and it is this frequency range that will be a focus for controller design and testing.  

For direct analysis, the system described by Eqs (17) and (18) is combined with an input weighting function, as 
shown in Fig. 3. The transfer function 𝑊𝑊1(𝑠𝑠) is a stable approximation of the forcing function cos Ω𝑡𝑡 given by  
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𝑊𝑊1(𝑠𝑠) = 2𝜁𝜁Ω𝑠𝑠
𝑠𝑠2+2𝜁𝜁Ω𝑠𝑠+Ω2 (19) 

This resonant filter is used to probe the L2 gain characteristics for harmonic forcing. If 𝜁𝜁 is chosen sufficiently small 
then, for a stable linear system (𝑓𝑓 = 0), we have 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿2 = sup𝑑̃𝑑≠0
‖𝑦𝑦1‖2
‖𝑑̃𝑑‖2

= ‖𝑊𝑊1(𝑠𝑠)𝐺𝐺𝑦𝑦𝑦𝑦(𝑠𝑠)‖∞ = supω 𝜎𝜎 (𝑊𝑊1(𝑗𝑗𝑗𝑗)𝐺𝐺𝑦𝑦𝑦𝑦(𝑗𝑗𝑗𝑗)) ≈ 𝜎𝜎 (𝐺𝐺𝑦𝑦𝑦𝑦(𝑗𝑗Ω)) (20) 

For the nonlinear case, this frequency domain interpretation is no longer valid. Nonetheless, the value of the peak 
L2 gain provides a useful bound on the magnitude of vibration (in the sense of the L2 norm) under conditions of 
harmonic forcing. An upper bound on the value of the peak gain can be obtained by solving the LMI Eq. (17) with the 
smallest possible value of 𝛾𝛾. Values for the peak-gain bound obtained by solving the LMI problem for a range of 
values of Ω are shown in Fig. 2. Note that for this analysis 𝐵𝐵𝑢𝑢 = 0 as the PD controller is already accounted for 
within the model and no additional control is being applied. For the LMI analysis, the forcing amplitude is not 
accounted for directly but is implicit in the choice of 𝜅̅𝜅. Larger forcing amplitude is associated with larger values of 
𝑓𝑓 = 𝛽𝛽 𝑧𝑧3 and hence, a larger value of 𝜅̅𝜅 = sup𝑡𝑡(𝑓𝑓(𝑡𝑡)/𝑧𝑧(𝑡𝑡)) = 𝛽𝛽 sup𝑡𝑡(𝑧𝑧(𝑡𝑡)2). For the results shown in Fig. 2, the LMI 
gain-bound was obtained using the actual value of 𝜅̅𝜅 from each simulation run. The gain-bound from the LMI analysis 
is seen to be sufficiently ‘tight’ to warrant its further application in the controller synthesis problem – which seeks to 
reduce the gain bound through application of an optimized feedback control law. 

 
4.3 Robust feedback control synthesis 

For controller synthesis, the augmented plant structure shown in Fig. 4 was considered. Here, the output 
weighting 𝑊𝑊1(𝑠𝑠) reflects the expected characteristics of the disturbance signals (as for the analysis case in Fig. 3). 
Note that 𝑊𝑊1(𝑠𝑠) is now applied at the output of the plant so that, for implementation, the states of 𝑊𝑊1(𝑠𝑠) can be 
reconstructed from measurement of 𝑦𝑦. In the case study, we consider rotating unbalance as the main source of 
vibration excitation and seek to minimize vibration at disk 1 only. Hence, we may anticipate nonlinear behavior due to 
large amplitude vibration at disk 2. The weighting function 𝑊𝑊1 is therefore chosen to penalize 𝑦𝑦 over a frequency 
range corresponding to rotational speeds 0-200 rad/s, but emphasizing a nominal operating speed of 190 rad/s.  

For linear controller design, the weighting function 𝑊𝑊2  would be chosen so that |𝑊𝑊2(𝑗𝑗𝑗𝑗)|  exceeds the 
multiplicative uncertainty in the plant (frequency response) model. According to the small gain theorem, if the closed 
loop system model 𝑇𝑇𝑢𝑢𝑢𝑢 (from 𝑑𝑑 to 𝑢𝑢) satisfies ‖𝑊𝑊2𝑇𝑇𝑢𝑢𝑢𝑢‖∞ < 1, the actual closed loop system will then always be 
stable. Strictly, these arguments are appropriate for linear systems only. Nonetheless, limiting the peak L2 gain of the 
nonlinear system 𝑊𝑊2𝑇𝑇𝑢𝑢𝑢𝑢 helps to create a controller that is more robust to model error (although an appropriate choice 
of 𝑊𝑊2 to guarantee stability is harder to deduce). The synthesis problem is to obtain a control law such that the peak L2 
gain of the closed loop system from 𝑑𝑑 to 𝑦̃𝑦 is less than 1. This is a nonlinear version of an H-infinity control problem, 
similar to the mixed sensitivity design paradigm, with the objective to achieve a closed loop system satisfying 

‖𝑊𝑊1𝑇𝑇𝑦𝑦𝑦𝑦
𝑊𝑊2𝑇𝑇𝑢𝑢𝑢𝑢

‖
∞

< 1 (21) 

  
Fig. 3  The nonlinear rotordynamic model is augmented with a weighting function (disturbance model) for analytical 

determination of the L2 gain under conditions of harmonic excitation 
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The controller solution will thereby provide vibration attenuation performance with robust stability. The state-space 
model for the augmented plant has the same form as Eqs (2)-(5) but with new state vector 𝑥̃𝑥, which combines the rotor 
states 𝑥𝑥 with weighting function states 𝑥𝑥1 and 𝑥𝑥2 according to 𝑥̃𝑥𝑇𝑇 = [𝑥𝑥𝑇𝑇 𝑥𝑥1𝑇𝑇 𝑥𝑥2𝑇𝑇], as shown in Fig. 4.  

Figure 5 shows the frequency response characteristics (singular values) for the linearized closed loop dynamics 
𝑇𝑇𝑦𝑦𝑦𝑦 and 𝑇𝑇𝑢𝑢𝑢𝑢, together with the inverse of the weighting functions 𝑊𝑊1

−1 and 𝑊𝑊2
−1. The inverse weighting functions 

exceed the maximum singular values over all frequencies, which is in agreement with Eq. (21). Hence, the required 
H-infinity performance and robustness properties are confirmed, at least for the linearized system.  

 
5. Experimental results 
 

Nonlinear H-infinity controllers were implemented and tested on the experimental system. For comparison, a 
linear H-infinity controller was designed based on the same formulation and a comparable choice of weighting 
functions. It was found that the linear H-infinity controllers generally had good vibration attenuation characteristics 
over a low frequency range (0-200 rad/s), even for nonlinear operation. This can be explained by the increased damping 
for the first flexural mode. However, for certain choices of 𝑊𝑊1, closed loop stability was not maintained when rotor 
interaction with the clearance ring occurred at disk 2. In contrast, the nonlinear H-infinity controller was able to 
maintain stability over the full range of linear and nonlinear operating conditions. It thus became clear that, for linear 
controller design, stability under nonlinear operation was difficult to ensure and sensitive to the exact choice of 
weighting functions. So the approach of dealing with nonlinear effects explicitly was clearly advantageous. 

  

 
 Fig. 4 Augmented plant for nonlinear H-infinity controller synthesis 
 

 
 (a)                            (b) 

Fig. 5 Results of nonlinear H-infinity controller design. Plots show frequency response characteristics for the linearized 
closed loop system: (a) vibration attenuation performance  (b) robust stability 
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(a) linear operation (without clearance ring) (b) nonlinear operation (with clearance ring) 

 
Fig. 6  Rotor vibration during steady speed rotation: (a) no rotor-stator contact interaction (linear case)  (b) with rotor-stator 

contact interaction (nonlinear case)  
 

Figure 6 shows rotor vibration levels for constant rotational speed, quantified in terms of the RMS 
displacements measured at disks 1 and 2. Figure 6a, shows results for both linear and nonlinear H-infinity designs 
under linear operation (with no clearance ring fitted). The controllers gave similar results in terms of RMS vibration at 
disk 1, although the linear controller design gave reduced vibration for the nominal operating speed of 190 rad/s. The 
response behavior reflects the overall form and scaling of 𝑊𝑊1 (see Fig. 5a). The vibration at disk 2, which is not 
included in the cost function, is noticeably different for the two controllers. Figure 6b shows results for nonlinear 
operation, with installation of the clearance ring at disk 2. The nonlinear H-infinity controller was effective for the full 
range of running speeds and unbalance conditions tested. The unbalance condition of the rotor was such that hard 
interaction with the clearance ring only occurred for higher speeds (>180 rad/s). For the linear H-infinity controller, the 
risk of destabilization due to rotor contact with the clearance ring prevented a full set of results being obtained. 
Although light rubs resulted in limit-cycle response, sustained rubbing led to severe vibration requiring immediate 
controller shut down. Results for the base-level PD controller are also shown in Fig. 6b for comparison. Figure 7 shows 
orbit plots for a rotational speed of 95 rad/s for all three controllers. A limit cycle instability involving rub interaction 
with the clearance ring is evident for the linear H-infinity controller (Fig. 7c).  
 
6. Conclusions 

 
It has been shown how, for a rotordynamic model incorporating nonlinear effects, an H-infinity controller solution 

can be obtained by using numerical optimization to solve the HJI equation (in matrix inequality form). This leads to a 
suboptimal linear state feedback controller for the nonlinear rotordynamic system. For the test case investigated, 
controllers were designed to achieve rotor vibration suppression for a rotational frequency range including the first 
critical speed for rotor flexure. Although linear and nonlinear controllers had similar vibration suppression qualities 
over a low frequency range, linear designs were prone to lose stability during large amplitude vibration. The nonlinear 
H-infinity controller maintained stability while giving comparable vibration suppression qualities - when assessed by 
metrics used for the controller design optimization. Further work should develop the design approach for systems 
having more than one AMB and with rotordynamic models having multiple nonlinear terms, for example due to 
multiple clearance/backup bearings. This could validate the approach for typical AMB/rotor configurations and 
applications.  
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Fig. 7  Measured rotor orbits involving nonlinear rotor vibration for rotational speed of 95 rad/s 
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