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Abstract
The electrodynamics of magnetic thrust bearings are characterized by an above-average dependency on the used
materials. Axially directed fields render laminated stators and rotors ineffective. High induced voltages inside the
magnetic core evoke eddy currents and opposing fields, which are compensated by an additional magnetizing cur-
rent causing a significant delay between the measurable coil current and the force-related magnetic flux. Although
this effect, hampering control dynamics, can be reduced by the use of Soft Magnetic Composites for non-rotating
parts, the thrust disk will be made of steel due to its superior tensile strength and saturation flux density. The
analytical modeling of mixed-material magnetic thrust bearings reveals new challenges arising from asymmetries
and low permeable magnetic core sections, which are both addressed in this paper.
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1. Introduction

High dynamical active magnetic thrust bearings and actuators are driven by multiples of its rated voltage to achieve
high stiffness and force gradients. The underlying rapid flux gradients cause a significant emergence of eddy currents
inside the magnetic core. Axially directed fields render laminated stators and rotors ineffective and high induced voltages
lead to opposing fields originating from these eddy current loops (Fig. 1a). However, the main flux Φ generating the
thrust force F is directly dependent on the terminal voltage u and the opposing fields are compensated by an additional
magnetizing current i′µFe. Therefore a significant delay between the measurable coil current and the force-related magnetic
flux is observed (Fig. 2). Increasing demand on control dynamics require to overcome these eddy current effects, which
in general are characterized by an above-average dependency on the used materials.
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Figure 1 Combined radial/thrust bearing: a) Magnetic fields and eddy current loops in cylindrical core parts, e. g. thrust disk
b) Cross section c) Magnetic circuit of thrust bearing divided into effective reluctances.

As a first approach the application of less electrically conductive materials for stator and rotor, like Soft Magnetic
Composites (SMC), can reduce the phase delay drastically in comparison to conventional solid steel bearings (Fig. 3). In
this case and for laminated radial bearings the eddy current effects can be modeled simply by considering the eddy current
time constant TFe in the equivalent electric circuit as shown in Bahr et al. (2013). But even for bearings partly made of
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steel TFe is generally bigger (up to 10 times for fPulse = 20 kHz) than the actual inverter pulse width and therefore not
applicable, as the state of constant current gradient (section B in Fig. 2) is never reached during one period. However, the
lower saturation flux density and weak mechanical strength (σ = 70 MPa) currently disqualify SMC as material especially
for the rotating components in industrial high-speed applications.
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Figure 2 Qualitative currents and its asymptotes immediately
after voltage pulse - TFe: Time delay between
measurable coil current and thrust force
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Figure 3 Measured step response of the coil current for 48 V
voltage step: comparison of thrust bearing with
solid SMC stator and either steel or SMC disk

A second approach is the analytical modeling of the axial magnetic circuit in terms of a reluctance network by
solving the underlying differential equations considering the eddy current effects due to the typical high flux gradients. By
sufficient simplification of the model a compensation of the main flux delay within the closed-loop control is theoretically
possible. Instead of the coil current, the control of the magnetic flux density respectively the force generating magnetizing
current is intended. The analytical models of the current and position plants can serve as estimators for the determination
of the actual value for the force related air gap flux density Bg from the measured coil current (Fig. 4a). Their transfer
functions are based on fractional order systems (Monje et al., 2010) or implicit systems (Riu et al., 2003), a research field
still in its early stages. The required approximations of the reluctance network and its practical implementation are the
focus of further studies.
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Figure 4 Flux density control loop with measurement of coil current, flux density estimation with fractional order (implicit)
system, PID-contoller and fractional-order plant. Parameters: T2 - main field time constant, T1 - half order eddy
current time constant, Tt - inverter delay, w - number of turns, Ag - area of air gap

In order to achieve low losses, as required e. g. in vacuum applications, and high dynamics a combination of both
approaches can be applied as in the studied configuration (Fig. 1). Profiting from the low electrical conductivity and
therefore low eddy current density the stator is made of SMC, while for the thrust disk conventional steel (42CrMo4,
SAE4140) is used due to its superior tensile strength (σ = 1 GPa). Even though the air gap geometry is still symmetrical,
the magnetic field on the steel side of the air gap suffers from a much higher field displacement and the field distribution
is asymmetrical. Therefore the assumption of symmetry and identical materials on both sides of the air gap as proposed
in previous works (firstly Zhu, 2005; later Sun et al., 2009 and Zhu et al., 2010) is invalid for the employed configuration.
This paper focuses on the refinement of the analytical air gap model, contained in the effective air gap reluctance Rmgi(jω),
also for the underlying asymmetrical case. Furthermore the reluctances of the stator corners (Rmk in Fig. 1c) were usually
neglected rightly to date, but the comparatively low relative permeability of SMC recommends their inclusion, as proposed
in this paper. Saturation and frequency dependent leakage fluxes are still neglected though and their consideration will be
part of future works. The results are validated by FE-analyses.
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2. Advanced Magnetic Circuit Model

The electric conductivity κ of the utilized steel grade 42CrMo4 is a thousandfold bigger in comparison to SMC
(Somaloy Prototyping Material) causing high eddy currents, which have a great impact on the field distribution within the

Table 1 Analytical solutions of all partial reluctances for
magnetic cores of a single material (Zhu et al., 2005)
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magnetic core, described by the skin depth δα. Hence the an-
alytical model is derived from the diffusion equation, which
can be solved for every section (Fig. 1c) of the magnetic core
assuming an one-dimensional field propagation, specifically
�B(R3, t) = B(R3, t) (Stoll, 1974):

∆B(R3, t) = κµ0µr
d
dt

B(R3, t) (1)

The geometric derivation indicated by the Laplace operator ∆
is independent of the time derivation and Eq. (1) can be rewrit-
ten for sinusoidally excitation, assuming an initially constant
frequency ω:

∆B(R3) = jωκµ0µrB(R3) = α2B(R3) (2)

which has the form of e. g. the modified Bessel’s equation

∂2Bz(r)
∂r2 +

1
r
∂Bz(r)
∂r

− α2Bz(r) = 0 , (3)

in case of axially permeated cylindrical geometries. In general the solution of the diffusion equation for any magnetic
actuator is a function of the wave propagation constant α (Kucera et al., 1996) containing the square root of the complex
frequency jω. By integration one can obtain the magnetic fluxΦ and the so-called effective reluctance Rmeff (Tab. 1 - Zhu,
2005; respectively effective permeability µreff introduced by Rabinovici et al., 1992). A special case reveals the air gap
field: though there are no eddy currents, it is not homogeneous as its width is usually to small (Fig. 5). The only partial
homogenization was first considered by Zhu (2005) by applying a reluctance network on the air gap.
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Figure 5 Flux lines Φ within the skin depth δα inside a cylindrical iron core with air gap surrounded by a solenoidal excitation
coil (wix = current linkage) for frequencies a) below, b) around and c) above the threshold frequency f0 of Rmg(jω).

He stated that all flux lines in the air gap field region would be either parallel to the air gap surface inside the core or
perpendicular through the air gap, which is true for frequencies over a certain material-dependent threshold frequency
f0 (Fig. 5c). It was also assumed that the frequency-dependent width of the air gap field region would not overlap with
the adjacent core field region. As shown in Fig. 5b this is not the case for frequencies around f0, but the error made was
found to be negligible by Seifert (2014). The modeling of the air gap field region with a reluctance network is thoroughly
discussed in Zhu et al. (2005) and leads to the air gap reluctance Rmgi (Eq. (4)). For low frequencies (Fig. 5a) the air gap
field is nearly homogeneous as expected, confirmed by the convergence of Rmgi(jω) to its stationary value for ω→ 0.
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However, Zhu’s solution assumes identical materials on both sides of the air gap. In consequence he solely defines the
air gap wave propagation constant β for a single material. This paper proposes an approach to determine the asymmetrical
air gap wave propagation constant β12 which firstly covers the case of mixed materials within a magnetic circuit (Sec. 2.1).
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Figure 6 Equivalent circuit of magnetic thrust
bearing with effective inductance

Assuming a single core material and ignoring the corner elements Rmk, all
reluctances found by Zhu (Tab. 1) can be summed up to form an electric
circuit (Fig. 6) with the effective inductance Leff with the number of turns w.

⇒ i(jω)
u(jω)

=
1

RCu + jωLeff
=

1

RCu + jω
w2

∑
i

Rmi(jω)

. (5)

2.1. Air Gap Model Considering Asymmetrical Air Gap Field Distribution
Though the current density within the air gap is J = 0, an inhomogeneous air gap field implies an air gap skin depth

δβ. It corresponds to the skin depth of the current density field at the boundary surface between core and air gap field.
In case there are different materials (characterized by α1 and α2 and respectively β1 and β2) on both sides of the air gap,
there obviously exists an asymmetrical air gap wave propagation constant β12 in-between β1 and β2.

The main elements of the magnetic thrust bearing (Fig. 1c) are solid hollow cylinders (Rmai, Rmao) permeated by
an axially directed flux density field �B, changing its direction analogous to the frequency ω of its provoking harmonic
magnetizing current i. According to Lenz’s law a delayed circular current density field �J is evoked by the change of �B
forming an oscillating electromagnetic wave. For high frequencies ω the J-field can only follow the oscillation close to
the surface of the magnetic conductor, which is called the skin effect characterized by the core skin depth δα. Within δα
the current density wave is moving with the propagation speed v = ω · δα. At the boundary between two materials the
propagation speed is changing due to the differences in permeability µ and conductivity κ of the materials. However the
change is not stepwise as the continuity condition of the normal component of the flux density �n · (Bn1 − Bn2) = 0 would
be violated. At a certain point at the boundary [r = x12, z = 0] therefore applies Bn1 = Bn2, which also requires the
propagation speeds v1 and v2 to adopt a mean value v12. The mean value v12 of speeds in respective to a fixed displacement
x12 - and hence the proportional skin depth δα12 - are generally calculated by the harmonic mean:

1
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This relationship was verified by FE-analyses in Seifert, 2014. For the wave propagation constant α, being the reciprocal
of δα, follows the arithmetic mean:

α =

√
2j
δα

=⇒ α12 =
1
2
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)
. (7)

In the most cases in conjunction with magnetic actuators and bearings the direct boundary between two core materials
is not of interest, but the transition between two materials bridging an air gap, like in the underlying case of a magnetic
thrust bearing consisting of a SMC stator paired with a steel thrust disk. It can be assumed that the flux takes the shortest
path over the air gap between both stator paths. Consequently it flows ideally in axial direction and the normal component
of the flux density Bn is constant. Therefore one can assume, that above relations remain valid in spite of the air gap. By
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Figure 7 Exemplary eddy current density J inside a cylindrical iron core (of different material combinations: κSMC � κSteel)
with air gap surrounded by a solenoidal excitation coil (w = number of turns, current ix of arbitrary frequency).
Skin depth δ: particular radius where current density falls to 37 % of its surface value: δ(z) = r(z, J = e−1 J0).
Core skin depth δα: equal for each material in all three cases. Air gap skin depth: δβ depends on both materials.

calculating the air gap wave propagation constant β by its known formula (Tab. 1) and inserting it into Eq. (7) it becomes
apparent that indeed the air gap g is canceled out and β12 persists independent of it:
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Furthermore an analysis of the unit of the air gap propagation constant [β] = 1/m suggests the relation

β ∼ 1
δβ

and therefore δβ ∼ 4

√
µ

κ
and δβ =

c
β

with c =
8√−2 . (9)

The novel definition of the proportionality constant c was found empirical by FE-analysis (e. g. Fig. 8, Seifert, 2014) with
no mathematical proof yet, but appears to be exact for high frequencies leading to the case in Fig. 5c, matching the general
validity of the reluctance model.
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Figure 8 Skin depth of current density ( δ = r(J = J0/e)⇒ contour line J = J0/e = J(r2)/e ) in stator and air gap (g = 0.5 mm)
for an arbitrary frequency fx, permeability µx and conductivity κx where it applies δα ∼

√
µκ and δβ ∼ 4

√
µ/κ

a) if κ=const.⇒ δα= f (1/µ), δβ= f (µ) b) if µ=const.⇒ δα= f (1/κ), δβ= f (1/κ) c) if µ/κ=const.⇒ δβ=const.

The average permeability µr12 is a mathematical auxiliary quantity which can be calculated recursively from the
special case in Fig. 8c. It becomes apparent that no matter how much the core skin depths δα1 and δα2 diverge, the air gap
skin depth δβ is equal for any material combination as long as the proportion µ/κ is equal for both materials, which can
be used as boundary condition
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2
1 = β

2
2 = β

2 (10)

to obtain the solution for µr12 from Eq. (8), leading to the arithmetic mean of µr1 and µr2:
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Finally for the asymmetrical air gap wave propagation constant β12 and asymmetrical air gap skin depth β12 can be stated
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Figure 9 Bode plot of the effective air gap reluctance and adjacent axial core reluctances G(jω) = Rmgi(jω)+ 2 ·Rmai(jω) for the
three cases and exemplary geometry of Fig. 7: a1 = a2 = 11 mm, r1 = 22.5 mm, r2 = 42 mm, g = 0.5 mm,
fmgi: threshold frequencies of air gap reluctances Rmgi

Figure 9 shows that the reluctance Rmgi for the asymmetric case fits well in-between the symmetric cases. The
maximum error compared to the FE-analysis is only 4 % for the latter and 2 % for the first case. It arises due to the
overlapping of Rmgi and Rmai close to the respective threshold frequencies as explained in Fig. 5. Obviously for the
asymmetric case the error is halved, as the overlapping just occurs on one side of the air gap for a certain frequency.
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2.2. Consideration of corner reluctances
The corner reluctances Rmk (Fig. 1c) were usually neglected (Zhu et al., 2005; Sun et al., 2009) because of their low

impact in case of high permeable steel cores. But for SMC stators (µr < 600) their disregard will cause an error of up to
7 % of the stationary value of the total effective reluctance Rmeff , which recommends their inclusion. Due to the appearance
of elliptic integrals there is no analytical field solution of the diffusion equation (2) for this geometry and other approaches
(Flax et al., 1966) are too extensive to be used in this case. However, FE-analyses have shown that the determination of the
stationary value ( f = 0) of Rmk is sufficient. Indeed the effective reluctance would rise for high frequencies owing to the
skin effect, but on the other hand the flux path becomes shorter so as to both effects are canceled out for common corner
geometries. In Seifert (2014) is thoroughly derived how the corners of the magnetic core can be approximated by a toroid

Figure 10 Simulated flux lines for low frequencies
and assumptions for the approximation of
the stator corners with a toroid

with an quarter-elliptic cross-section (Fig. 10) resulting in Eq. (13)
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for the lower corners and Eq. (14) for the upper corners:
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The arithmetic series (13, 14) converge and the limit can be approximated numerically with a sufficiently large N.

3. Conclusion and outlook

Together with the firstly considered reluctances of the stator corners Rmk and the improvement of the air gap reluc-
tance network by Zhu et al. leading to Rmgi, in this paper the established models are completed for use with any cylindrical
magnetic actuator and active magnetic thrust bearings designed with mixed materials. Over a wide frequency range the
reluctance model agrees well with the FE-analysis (Fig. 11) and there occur only minor deviations due to the unavoidable
overlapping of part reluctances.

A major deficiency of the current state is the non-consideration of saturation. Although low saturation can be easily
achieved for magnetic thrust bearings by design, the skin effect drives the surface - especially of the steel made thrust disk
- into saturation, which also causes the main flux to gap the thrust disk on the whole. Both effects are highly frequency
dependent and correlated, what makes them challenging to consider. Sun et al. (2009) already expanded the reluctance
network of Zhu et al. (2005) by parallel leakage reluctances, which can be included into this model as a next step.
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Figure 11 Magnitude plot of the total effective reluctance Rmeff of the magnetic circuit, FE-analysis with neglected saturation
and analytical solution, fmgi: threshold frequency of air gap reluctance Rmgi
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Having a closer look at the frequency response of the characteristically total effective reluctance Rmeff(jω) (Fig. 11)
it reveals an unusual gradient of 10 dB/decade for high frequencies, indicating a half-order system G(s1/2), which was
expectable as all reluctances Rmi in Tab. 1 are proportional to the wave propagation constant α and the square root of
the complex frequency

√
jω. Our further research is aimed at showing how fractional-order systems, controllers and

estimators can be used for a high dynamic magnet bearing control.
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