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Abstract
A new structure for active magnetic bearings, based on a successfull idea used in self-bearing motors, has been
recently discussed in the literature. A flux interconnection characterizes this idea, and theoretical results predict
some advantages of this new model, when compared with the traditional one, with independent flux paths. As an
example, a greater equivalent stiffness is expected for this new type of bearing. Two recently built prototypes were
used to check whether these expectations really hold true. The main goal of this paper is to present and discuss the
prototype details.
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1. Introduction

The conventional active magnetic bearing, or AMB for short, can be studied in (Schweitzer et al., 1994) (Chiba et
al., 2005) (Schweitzer et al., 2009). This traditional AMB, here called Type A, is based on the structure shown in Fig. 1:
there are four “U-shaped electromagnets”, two for acting in the x direction and two in the y direction, resulting in four
independent magnetic flux loops.
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Fig. 1 Type A, or traditional, configuration for AMBs; windings are shown for the positive x direction only; there
are no connections among the flux paths. Opposing pairs of windings along the x (y) direction control the
horizontal (vertical) position.

The windings in the x and y directions are fed with currents i0 ± ix(t) and i0 ± iy(t), where the constant i0 is the base,
or bias, current, and the differential currents ix and iy control the rotor position. Using reluctance concepts, the resultant
forces fx and fy can be expressed in terms of these currents, the air magnetic permeability µ0, the number of coils na,
the cross section area in the ferromagnetic material Aa and the nominal length h of the air gaps. After a linearization
procedure (Schweitzer et al., 1994) around the operating point x = y = ix = iy = 0, the type A forces are shown in (1).
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Notice that the non connected nature of the magnetic fluxes leads to uncoupled forces.

fx = ka
px + ka

i ix

fy = ka
py + ka

i iy











where










ka
p = µ0Aan2

ai20/h
3

ka
i = µ0Aan2

ai0/h2 (1)

A different structure for magnetic bearings, here named Type B, is possible, with four windings that lead to intercon-
nected magnetic loops, as depicted in Fig. 2. This structure is found in the self-bearing motors researched in Brazil (David,
2000) (Rodriguez and Santisteban, 2011), where alternate currents are injected in the windings to provide a simultaneous
torque; for AMBs, DC currents are considered.
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Fig. 2 Type B, the proposed configuration for AMBs; windings are shown for the positive x direction only; the
flux paths are interconnected. Opposing pairs of windings along the x (y) direction control the horizontal
(vertical) position.

The reluctance forces fx and fy in Type B were studied in (David et al., 2013) and (David et al., 2014); note that there
are some typos affecting the flux indices in this last paper, but the main results hold true. After an algebraic procedure and
a linearization stage, the following expressions were found

fx = kb
px + kb

i ix

fy = kb
py + kb

i iy











where










kb
p = 2µ0Abn2

bi20/h
3

kb
i = 2µ0Abn2

bi0/h2 (2)

Two remarkable aspects are to be noted: (a) the fluxes are interconnected in type B, but the forces are decoupled,
exactly as in type A; (b) a factor 2 appears in the formulas above, meaning that the position and current constants, kb

p
and kb

i have higher values than in the A case. Although other results are known with the Type B bearing concept (Santos
and Kjolhed, 2007), the authors of this article did not identify, up to the present time, the association of itsinterconnected
structure with uncoupled equations for radial restoring forces or with higher values of the magnetic constants.

Section 2 presents analytical results and simulations on how increasing kb
p,i affects dynamic and control aspects of

AMBs (David et al., 2014). Details of the protoypes built to allow real comparisons between types A and B are shown in
section 3, while section 4 brings the simulations results. Discussions about real tests, final comments and considerations
on what remains to be done are made in section 5.

2. Theoretical Comparisons

Assuming the same outside stator diameter, Type B active magnetic bearing has some advantages when compared
with Type A: (a) the position and current constants kb

p and kb
i in (2) are two times bigger than their counterparts ka

p and
ka

i in (1); (b) the cross section area Ab can be chosen greater than Aa; it is reasonable to have Ab ≈ 2Aa; (c) the number
of coils nb can, possibly, be larger than na. The net conclusion is: the position (kp) and current (ki) constants for Type B
AMBs have values at least 2 times higher than in case A. Depending on design aspects (Ab and nb), even higher rates can
be achieved. How much can these constants be increased? The magnetic saturation seems to be the limit.

To evaluate the effects of kp and ki in an AMB performance, a theorectical analysis was applied, in (David et al.,
2014), to a control problem: a particle moving in a rectilinear path is to be positioned by magnetic devices that apply on
it a force f (t) = kpx(t) + kii(t), where i is a control current and x is the displacement. A controller is desired, for driving
x to 0 for all possible initial conditions, and in the eventual presence of constant, horizontal disturbance forces. This is a
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simple, but meaningful, problem: many theorectical aspects of the real life operation and control of AMBs are present in
it. PD and PID controllers were used, and the effects of kp and ki on the positioning problem an on the rejection of constant
disturbances were analised. The conclusions, valid in much more general situations involving real world applications of
practical interest, are that increasing the values of the magnetic force constants kp and ki is a highly desirable goal in the
AMB field.

3. Prototype Building and Models

Theoretical considerations in (David et al., 2013) and (David et al., 2014) suggest that the interconnected fluxes in
the type B structure increase the values of the magnetic force constants kp and ki. How sure can one be about the tools
used in those developments? The idea of the Type B structure has already been tested in practice. In a prototype used at
UFRJ (David, 2000), a vertical rotor is radially positioned by a self-bearing motor based on the interconnected fluxes of
the type B structure. Such a situation is more complicated, because the windings are fed with AC currents, to achieve the
dual capabilities of a self-bearing motor: torque generation and radial positioning. The device has worked!

The best possible way to answer these questions is by constructing and testing prototypes. Only after this stage,
will the ideas proposed here be validated. Or not. Two prototypes, one for type A and the other for type B, have been
constructed; figure 3 shows a top view of them. A vertical rotor with a large, perforated upper disk will fill the above
pieces; the same Fig. 3, in the center, shows a view of a mounted kit, with the rotor inserted in the carcass with the stators.

type A stator

mounted kit

type B stator

Fig. 3 Top view of prototypes A, in the left and B in the right; notice the 8 “poles” in type A, and only 4 “poles”
in type B. A mounted kit is shown in the center, with a vertical rotor inserted in one of the carcasses.

The vertical part details are depicted in the left side of Fig. 4. The bottom end is a mechanical bearing to prevent
vertical movements; just above comes the rotor of a two-phase induction motor for spinning the shaft, and then the AMB
rotor, the same for types A and B, and the sensors target. A disk with holes perforated near its edge lies on the upper part.

upper disk

security bearing
sensor xs, ys

type A or B
AMB

induction motor

supporting bearing x

unbalancing mass m
z

x, α

z, θ

y, β

upper disk

sensor x, y

type A or B
AMB

induction motor

q

d

b

Fig. 4 Vertical rotor’s aspects and dimensions, in the left part. In the right half, a simplified representation of its
basic geometric aspects and dimensions.
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In order to find the mathematical model for the prototypes, the traditional procedures, (Schweitzer et al., 1994)
(Chiba et al., 2005) (Schweitzer et al., 2009), will be used. The self aligning, supporting bearing at the bottom allows
angular movements in any direction and provides a fixed point for the rotor. An inertial reference system is placed at
this location; axes x and y lie in the horizontal plane and z marks the vertical direction. The positive angles α, β and θ
can be found by using the right hand rule on x, y and z. The right half of figure 4 sketches the situation; the supporting
and security bearings are not shown. Assuming a rigid and homogeneous rotor, the center of mass displacements can
be determined by α and β, and a full dynamic model can be obtained from the rotational equations only. Denoting the
angular moments of inertia around the three axes by Ix, Iy and Iz, symmetry considerations assure that Ix = Iy = J. The
classical dynamic equations for rotations are

Jβ̈(t) − ωIzα̇(t) = Eβ and Jα̈(t) + ωIzβ̇(t) = Eα (3)

where ω = θ̇ is the rotor angular velocity and Eβ,α express all external actions generating torques. The main equations
above can be displayed in a vector form:

J
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−α̈













+













0 ωIz

−ωIz 0
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Eβ
−Eα













. (4)

Defining the angular position vector p = [β − α]T and the external excitation vector E = [Eβ − Eα]T , the rotor
dynamics is described by

J p̈(t) +G ṗ(t) = E(t) where G =












0 ωIz

−ωIz 0













= ωIz













0 1
−1 0













(5)

is the gyroscopic matrix and J is the inertia coefficient (or the 2 × 2 inertia matrix J I2). External torques may come from
many different sources, four of which are consideredin this paper: E = Em + Eg + Ea + Ed.

Magnetic excitation Em: if xb and yb denote the rotor displacements at the AMB position, the forces generated in
each direction are

fx = kpxb + kiix and fy = kpyb + kiiy (6)

where the differential currents ix and iy and the coefficients kp,i can be used with either type A or type B cases. Assuming
rigidity and small angular displacements: β ≈ sin β = xb/b and α ≈ sinα = −yb/b which lead to xb ≈ bβ and yb ≈ b(−α).
Equations (6) become fx = bkpβ + kiix and fy = bkp(−α) + kiiy. These forces cause torques Pβ = b fx cos β and Pα =
−b fy cosα. Assuming, again, rigidity and small angular displacements: cos β ≈ 1 and cosα ≈ 1 which lead to Pβ = b fx

and Pα = −b fy,that can be expanded as Pβ = b2kpβ + bkiix and −Pα = b2kp(−α) + bkiiy. If Em = [Pβ − Pα]T is the
magnetical external excitation vector and u = [ix iy]T is the external input or control vector, a concise expression is

Em = b2kp p+ bkiu. (7)

Gravitational excitation Eg: since α and β are small angles, the torques caused by the rotor weight are negligible:
Eg ≈ 0. This is usually the case with vertical rotors; for horizontal ones, gravity must be considered.

Supporting bearing excitation Ea: the bottom bearing has a viscous damper effect, generating torques modelled
by Pβ = −Caβ̇ and Pα = −Caα̇ where Ca is a viscous constant. The external excitation contribution is

Ea =













Pβ
−Pα













= −Ca













β̇

−α̇













=⇒ Ea = −Ca ṗ (8)

Mass unbalancement excitation Ed: rotors with an homogeneous mass distribution are assumed in the model
preparation. When, and if, this is not true, unexpected forces and torques appear, acting as disturbances. If these actions
are not considered in the control laws design, their effects can be unpleasant and even unnacceptable. The upper disk in
the prototype rotor has 12 holes near the outer edge. They are placed in a symmetrical way, not to interfere with the body
homogeneity, but extra masses can be placed in one of them to cause an intentional disturbance. A small mass m in one
of the holes, as shown in figure 5, will act on the rotor with a centrifugal force mrθ̇2 = mrω2.

The projections of the centrifugal force on the x and y directions are f c
x = mrω2 cos θ and f c

y = mrω2 sin θ.
Since θ(t) = ωt, and considering the disk height q, the disturbance torques generated by the unbalanced mass are
Pβ = mrqω2 cosωt and Pα = mrqω2 sinωt. Therefore, the mass unbalancement external excitation contribution is

Ed =













Pβ
−Pα













= mrqω2












cosωt
− sinωt













= ∆u(t) where ∆ = mrqω2 and u(t) =












cosωt
− sinωt













(9)
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f c → centrifugal force

f c = mrθ̇2 = mrω2

f c
y = mrω2 sin θ

f c
x = mrω2 cos θ

Fig. 5 Top view of the upper disk with an extra mass m filling one of the holes; the centrifugal force is projected
on the x and y axes.

are, respectively, the disturbance coefficient and the disturbance input vector.

Entering the expressions obtained for the external excitations in equation (5) leads, after rearranging terms, to

J p̈(t) + (G +CaI2) ṗ(t) − b2kp p(t) = bkiu(t) + ∆u(t) (10)

It is very convenient to rewrite this equation in terms of xs and ys, the positions measured by the sensors. Rotor
rigidity, small angles and geometry considerations guarantee thatβ ≈ sin β = xs/d and α ≈ sinα = −ys/d which lead to
xs = dβ and ys = d(−α). If the sensor measurements vector is denoted by ps = [xs ys]T , then












xs

ys













= d












β

−α













=⇒ ps = d p (11)

Multiplying (10) by d from the left, using (11) and dividing by J we reach the dynamic equation

p̈s +Ge ṗs − Ke ps = B2u+D2u where Ge =
1
J

(G +CaI2) , Ke =
b2kp

J
, B2 =

bdki

J
, D2 =

mrqdω2

J
(12)

in terms of the sensor positions. The state variables x = [pT
s ṗT

s ]T = [xs ys ẋs ẏs]T can be chosen, leading equation (12) to

ẋ(t) = Ax(t) + Bu(t) + Du(t) (13)

where x, u and u have been previously defined, A is a 4 × 4 matrix and B,D are 4 × 2 matrices structured as

A =












0 I
A21 A22
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0
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0
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(14)

where the 2 × 2 blocks are

A21 = KeI =
b2kp

J













1 0
0 1













= A21(kp) and A22 = −Ge =
−1
J













Ca ωIz

−ωIz Ca













= A22(ω) (15)

B2 =
bdki

J













1 0
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= B2(ki) and D2 =
mrqdω2

J













1 0
0 1













= D2(m, ω) (16)

It is important to notice that equation (13) models a linear system that is time invariant only for a fixed rotational
speed, because A22 depends on ω.

4. Prototype Simulations

The prototypes parameters were measured, in the SI system; the geometric dimensions are b = 0.137, d = 0.203, q =
0.252, r = 0.060; the inertia and viscous values are m = 0.001, Iz = 0.0017, Ix = Iy = J = 0.0592,Ca = 0.0303. A base
current i0 = 3 was used, leadind to ka

p = 207738, ka
i = 27.70 for type A and, for type B: kb

p = 830952, kb
i = 110.79.

Assuming a constant ω = 100rd/s (954rpm), the state space parameters A, B and D were calculated, generating matrices
Aa, Ab etc. A state feedback control law u = Fx capable of stabilizing both models can be achieved with

Fa =













−6073.8 −25.5 −3.5 0
25.5 −6073.8 0 −3.5













.
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The resulting closed-loop behaviour can be described by the eigenvalues of Aa + BaF = {−22.2± j113.8, −24.5± j110.9}
and Ab + BbF = {−90.1 ± j211.5, −95.2 ± j211.5}. Simulations, with F driving models < Aa, Ba > and < Ab, Bb >

(calculated for a fixed w = 100rd/s) show that both cases are stabilized. Interesting results appear when an extra mass of
1g is fixed in the upper disk. There will be a mass unbalancement, and the harmonic forces at x and y will impose orbital
movements to the rotor. The overall efficiency of the AMB control can be judged by the the radius of these orbits. A more
complex simulation, with the model parameters now depending on ω (A21 and D2 in (15) and (16)), was performed, for ω
slowly varying from the rest condition to 250rd/s. The orbit radius for cases A and B is shown in figure 6.

Fig. 6 Rotor orbital movements due to harmonic disturbances caused by a mass unbalancement in the upper disk;
case A in the left and case B in the right. The high resonance in case A almost disappears in case B.

The sharp resonance in model A is almost completely eliminated, and shifted to a higher frequency, in case B. Other
control laws u = Fx can be found that stabilize both models with a better dynamic behaviour that avoids resonances in
their frequency response. In all these simulations, model B offers a clearly superior disturbance rejection characteristic.
The bench tests to be made with the real prototypes will follow very closely the procedures used in these simulations.

5. Comments and Conclusions

The real prototypes are already finished and operational, but the laboratory tests are not in the final stages yet and no
solid measurements has been made up to now. This means that sound statements can not be made yet. The authors have
great expectations that the here called type B concept will be a valid contribution for the active magnetic bearings field,
because of the possibility of increasing their equivalent mechanical stiffness.
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