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Abstract 
This paper presents mathematical calculations of active axial force and torque in a single-drive bearingless motor. 
The single-drive bearingless motor has only one set of three-phase winding. The active axial force and torque 
are generated by d- and q-axis currents, respectively. Only the rotor axial z-axis position is actively regulated. 
The other axes, radial movements x and y, and tilting movements θx and θy are passively stabilized. In this paper, 
the mathematical equations of the active axial force and torque based on a permeance method are derived. It is 
confirmed that calculated force and torque are corresponding with those of three-dimensional finite-element-
method analysis.  

Keywords : bearingless motor, magnetic bearing, single-drive, one degree-of-freedom, permanent magnet motor 

1. Introduction 

Bearingless motors have advantages of no wear, no lubricant, non-pollution and maintenance-free because a magnetic 
bearing function is magnetically integrated in a single motor. As a result, the bearingless motors have been applied in 
centrifugal pumps, contamination-free ventricular assist devices, high purity pharmaceutical mixing devices, rotating 
stages and flywheels. 

In recent studies of the magnetically suspended motors, the number of actively regulated axes is reduced because of 
the cost reduction. In one-axis actively positioned magnetic bearing motors and bearingless motors [1]-[8] only one 
degree of freedom (1DOF) is actively regulated, i.e., only the axial direction z is actively positioned, thus, only one 
displacement sensor and two or less number of inverters are necessary. The other axes are passively stabilized by passive 
magnetic bearing functions. Therefore, the cost is reduced with respect to 5DOF or 2DOF actively positioned bearingless 
motors. In particular, a few single-drive bearingless motors with 1DOF active positioning can generate both torque and 
suspension force with only one three-phase inverter [6]-[8]. Therefore, the cost can be reduced further. The authors have 
studied a 1DOF actively positioned single-drive bearingless motor for cooling fan application [7]-[8]. 

This paper presents equivalent magnetic circuits of the proposed single-drive bearingless motor. The mathematical 
equations of the active axial force and torque are derived. In addition, it is found that the proposed mathematical equations 
are effective to approximate the axial suspension force and torque. 

2. Proposed Machine Structure 

Fig. 1 shows the prototype machine structure in [8]. The machine is composed of a single-drive bearingless motor 
and two repulsive passive magnetic bearings. In the center, the stator and the rotor consist of three layers. In the center 
layer, the active axial force and the rotational torque are generated. In the upper and lower layers, only active axial force 
is generated. The center stator employs the laminated silicon steel and the upper and lower stator cores employs the soft 
magnetic composite. The upper and lower stator cores are bent to extend slot area in xz cross-sectional view. Therefore, 
supplemental windings can be installed around the upper and lower stator cores. The stator slot area is increased by three-
dimensional tooth structure thanks to the soft magnetic composite. As a result, the axial active force is improved because 
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the number of windings is increased. The rotor has permanent magnets (PMs) for eight rotor poles, and the magnetized 
directions in the center and lower layers are the identical. In contrast, the magnetized direction in the upper rotor is 
opposite to the other layers. 

Fig. 2 shows xy cross-sectional view. Only center layer is illustrated. The stator has twelve teeth and three-phase 
eight-pole windings. The rotor PMs are inserted in a paramagnetic PM holder. Thus, the rotor is a typical surface 
permanent magnet (SPM) rotor. The rotor outer diameter, magnetic gap, and mechanical gap are 27.4 mm, 0.8 mm, and 
0.3 mm, respectively. 

Fig. 3 shows the flux density distribution when the positive d-axis current of 6.12 A is provided. The rotor rotational 
angular position in Fig. 3 is corresponding to the d-axis. Black arrows indicate the magnetized direction of the PMs. The 
upper and lower PMs causes fluxes in the z-axis direction because the PMs are installed at unaligned positions with 
respect to the stator teeth. When the d-axis current is positive, the flux densities in the air-gap g1 and g3 are increased 
because the PM and the suspension fluxes are intensified. On the other hand, the flux densities in the air-gap g2 and g4 
are weakened. As a result, the positive axial force is generated. In case of negative d-axis current, negative axial force is 
generated.  

2. Voltage Equation 

In [8], the voltage equation has been derived. Let us define vd and vq as d- and q-axis voltages, respectively, R and L 
as a winding resistance and an inductance per phase, respectively, and an electrical angular speed ase. Let us also define 
Ψ  and zΨ   as a flux linkage at axial displacement z = 0 and a flux linkage per axial displacement z, respectively. The 
voltage equation is given as 

d 3 3 d
dt 2 2 dt
3 d 3 (1 )
2 dt 2
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,            (1) 

where, k is a coefficient of variation of induced voltage due to the rotor axial displacement. The torque T and the axial 
suspension force Fz can be expressed using voltage equation parameters and number of pole pairs p as, 

  qizkpΨT   1            (2) 

 
Fig. 2. xy cross-sectional view of proposed structure.Fig. 1. Proposed structure. 

 
Fig. 3. Principle of active axil force generation. 
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dzz 'iΨF  .                  (3) 

Therefore, The flux linkage per axial displacement zΨ   is equal to the current force factor. The d-axis current and q-
axis current can generate axial suspension force and torque, respectively. Moreover, suspension force and torque can be 
obtained by voltage equation parameters. 

3. Magnetic circuit 

In this section, voltage equation parameters are mathematically derived by the permeance method. In the proposed 
motor structure, the flux goes through not only on xy plane but also on xz plane because proposed structure have three 
layers in the rotor PMs and in the stator. Therefore, magnetic circuits are considered in both xz and xy planes to derive 
the voltage equation parameters. 

3.1 Equivalent magnetic circuit in xz cross-sectional view 

Fig. 4 shows equivalent magnetic circuit in xz cross-sectional view. The magnetic circuit is estimated by flux 
distributions in the 3D-FEM analysis. To simply the calculation, let us assume that permeability in the stator core is 
infinite and magnetic saturation can be neglected. A ground symbol indicates that the magnetic potential is equal to zero. 
Let us define that the radial air gap length and the axial air gap length as lgR and lgA, respectively. The rotor PMs outer 
radius is rm. The radial thickness of rotor PMs is tm. The axial length of center and side rotor PMs are lmc and lms, 
respectively. The axial air gap length lgA is equal to the axial length of side PMs lms. The reluctance in the center layer 
PM is Rmc. The reluctance in side layer PMs is Rms. The air gap reluctance at center layer is Rgc. The flux per pole at the 
center, upper, and lower teeth are ϕc , ϕsu, and ϕsl, respectively. The Ac and As indicate the magnetic potentials at the each 
rotor layer. Let us define μ0 and Br as a permeability of vacuum and residual magnetization of PM, respectively. The 
Magneto-Motive-Force (MMF) Am in the rotor PMs can be given by 

0

r m
m

B tA


 .           (4) 

Fig. 5 shows an enlarged magnetic circuit around upper gap in Fig. 4. The reluctance per pole Rgu(z) and Rgl(z) in the 
upper and lower gaps are expressed with a radial reluctance component RgsR and axial upper and lower reluctance 
components RguA(z), and RglA(z). The axial reluctance components depend on the rotor axial positon z. The equivalent 
reluctance of the upper gap and lower gap Rgs can be given by 

( ) ( ) / / ( )gs gu glR z R z R z .          (5) 

3.2 Equivalent magnetic circuit in xy cross-sectional view 

Fig. 6 shows flux density distribution in xy cross-sectional view. The PM fluxes pass through the air-gap, and circulate 
in the stator core and come back to the rotor PMs.  

Fig. 7 shows the equivalent magnetic circuit in the xy cross-sectional view. The equivalent magnetic circuit is 

 
Fig. 4. Equivalent magnetic circuit in xz cross-sectional-view. 
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estimated from the flux distribution in the 3D-FEM analysis. To simplify the calculations, the stator core is approximated 
to a ring yoke core without teeth. In addition, the MMF distribution is supposed to be sinusoidal. In Fig. 7, the xy cross-
sectional view of only one cycle of the electric angle is shown. The magnetic circuit inside of the rotor PM is just open 
because the rotor shaft is para-magnetic material. Therefore, the center layer rotor yoke reluctance RmcB is given by the 
following equation with the correction coefficient a. 

0 0

/ ( ) 2
( ) / 2

m m
mcB

mc m m mc

a p r t aR
l r t p l
 

 
 

 


.         (6) 

In this manuscript, the correction coefficient a equal to 0.6 from the 3D-FEM analysis. In case of upper and lower 
layers, the equivalent magnetic circuit in xy cross-section can be expressed by replacements of the reluctances from Rmc, 
Rgc, and RmcB to Rms, Rgs, and RmsB, respectively. The upper and the lower layer rotor yoke reluctance RmsB is given by 

0 0

/ ( ) 2
( ) / 2

m m
msB

ms m m ms

a p r t aR
l r t p l
 

 
 

 


.         (7) 

From equivalent magnetic circuit in xz and xy plane, the rotor PMs flux per pole ϕc , ϕsu(z), ϕsl(z) can be calculated as 

/ 4
m

c
mc gc mcB

A
R R R

 
 

          (8) 

( )
( )

( ) ( ) ( ) / 4
gl m

su
gu gl ms gs msB

R z A
z

R z R z R R z R
 

  
       (9) 

( )
( )

( ) ( ) ( ) / 4
gu m

sl
gu gl ms gs msB

R z A
z

R z R z R R z R
 

  
.              (10) 

In Eq. (9) and (10), the rotor PM flux per pole ϕsu(z) and ϕsl(z) depend on the rotor axial positon z. 
Fig. 8(a) and (b) show the rotor PMs flux ϕsu(z) and ϕsl(z) in Eq.(9) and Eq. (10) with respect to the rotor axial positon 

z. The flux per pole is greatly influenced by the axial air gap length lgA and the side rotor PM axial length lms. 

Fig. 7 Equivalent magnetic circuit in xy cross-
sectional-view. 

Fig. 6 Flux density distribution in xy cross-sectional view.

  
(a)        (b) 

Fig. 8 The rotor PMs flux per phase ϕsu and ϕsl with respect to rotor axial positon z.  
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3.3 Active axial force and torque 
Let us define Nc and Ns as numbers of turns of main windings per phase and supplemental windings per phase, 

respectively. The flux linkage by the magnetic field is given by 

3 3 3 3( ) ( ( ) ( )) ( ( ) ( )) ( )( ( ) ( ))
2 2 2 2f c c su sl s su sl c c c s su slΨ z N z z N z z N N N z z                . (11) 

The flux linkage by the magnetic field at z = 0 is Ψ . The derivative of the flux linkage with respect to z is zΨ  . 
Therefore, Ψ  and zΨ   are given as  

3 3(0)
2 2 / 4

c m
f c c

mc gc mcB

N A
Ψ Ψ N

R R R   
 

      (12) 

( ) ( ) ( )3 3( ) ( ( ) ( )) ( )
2 2

f su sl
z c s su sl c s

Ψ z z z
Ψ N N z z N N

z z z z
 

 
                

   (13) 

4 Confirmation with FEM and Experimental result 

Table. 1 shows geometrical and electrical parameters. In the calculations, only the axial gap length lgA and the axial 
length lms of the rotor side PM are variable parameters. The stator diameter Ds, the rotor PMs outer diameter Dm, rotor 
PM thickness tm, rotor center PM axial length lmc, radial gap length lgR and slot fill factor are fixed. The slot fill factor in 
xy and xz cross sections are 31% and 38%, respectively.  

Fig. 9(a) and (b) show the xz cross-sectional view when the lengths lgA and lms are short and long, respectively. The 
number of turns of main winding and supplemental winding are decreased in case of Fig. 9(a) because the slot area is 
decreased in the xz cross section. The number of turns of supplemental winding is only increased in case of Fig. 9(b) 

because the slot area in the xy cross section is not increased. 
Fig. 10 and Fig. 11 compare the current-force factor zΨ   and rated torque T, respectively, with respect to the axial 

gap lgA by the permeance method and 3D-FEM analysis, respectively. Moreover, an experimental result is plotted in Fig. 
10. The torque and current-force factor are calculated by Eq.(2), (3), (12), and (13). The calculation results are 
approximately corresponding with that of the 3D-FEM analysis in magnetically unsaturated region. The experimental 
result is also close to the calculated curve. 

5 Conclusion 

The equivalent magnetic circuits have been proposed for the single-drive bearingless motor. The mathematical 
calculation by a permeance method is presented. It is confirmed that calculated active axial force and torque are 
corresponding with that of 3D-FEM analysis. In addition, it is found that the calculated active axial force is close to the 
measured force obtained from experimental results with a test machine. 

Table 1. Geometrical and electrical parameters.

Parameter Symbol Unit Value 

Geometrical    
Stator outer diameter Ds mm 58 

Rotor PM outer diameter Dr mm 26.4 
Rotor PM thickness tm mm 5.7 

Rotor center PM axial length lmc mm 2.8 
Rotor PM axial space lmA mm 2.1 
Radial magnetic gap lgR mm 0.8 

Electrical    
Rated RMS current I0 A 1 

Current density J A/mm2 8 
PM residual magnetization Br T 1.28 
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Fig. 10 Current force factor zΨ   with respect to axial gap 

length lgA. 
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Fig. 11 Rated torque with respect to axial gap length lgA.
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(a) lgA and lms are short.    (b) lgA and lms are long. 

Fig. 9 The xz cross-sectional view when axial gap length lgA and rotor side PM axial length lms have changed. 
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