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Abstract
In the design of a magnetically levitated system the question arises whether the closed loop can be stabilized by a
certain active magnetic bearing (AMB). In this paper we introduce several characteristic quantities which evaluate
the static and dynamic capacity of an AMB system. A controller design is not necessary in this novel stability
estimation. The calculation of the proposed characteristic quantities can be used to estimate how well an AMB
is suited for the stabilization task. Furthermore, the derived dimensionless quantities allow easy comparison of
different AMB systems.
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1. Introduction

AMBs accomplish levitation and vibration control without mechanical contact (Chiba et al., 2005). They have to
keep the vibration amplitude, temperature in the coil and electronics, and the coil current in acceptable ranges. In this
paper we investigate 1-axis-controlled AMBs which are characterized by few parameters: the mass m of the levitated
body or rotor, the destabilizing stiffness k∗x, the force constant ki, the coil parameters (resistance R and inductance L) and
the maximum voltage umax. We do not include rotordynamics (gyroscopic effects) or disturbances in our considerations.
In this paper we follow a more basic approach and investigate certain fundamental physical limits of an AMB system.

1.1. Comparison with ISO 14839
ISO 14839-2 evaluates the vibrations of rotors supported by AMBs. This standard is applicable to rotating machines

with a nominal power greater than 15 kW, which excludes small-scale rotors such as turbomolecular pumps. In ISO
14839-2 one criterion is that the maximum radial displacement of the rotor should be smaller than 0.4 times the clearance
of the auxiliary bearing for long-term operation. The vibration magnitude and the resonance severity are regulated by ISO
10814. Compared to ISO 14839-2, we do not examine the AMB during operation but derive characteristic quantities of
the AMB system from its parameters.

ISO 14839-3 evaluates the stability margin of an AMB at nominal speed. The maximum peak of the sensitivity func-
tion, which is gained from measurements, should be below 12 dB. In this study we do not consider any control algorithm
for the derivation of the characteristic quantities. While ISO 14839 describes how to evaluate already operational AMB
systems our investigation is based on calculations assuming linear relationships.

2. System model

2.1. Dynamic behavior
We investigate an unstable, one degree of freedom (1-DOF) system with a negative stiffness k∗x (k∗x < 0 N/m, kx =

∣∣∣k∗x
∣∣∣)

as shown in Fig. 1. The voltage u is typically generated by a switching amplifier (with a fixed switching frequency usually
in the order of tens of kilohertz), and the duty cycle is the controlled variable. Due to the high switching frequency we can
use the average voltage over one switching period as input voltage u. The position of the body and the current is typically
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Fig. 1 a) Mechanical and b) electrical model of 1-DOF AMB. A positive current i generates a force in positive
x-direction.

measured. The instability of the levitated mass m is determined by the mechanical time constant

τm =

√
m
kx
. (1)

The lower the time constant τm the quicker the body moves away from the equilibrium position x = 0 µm if the AMB is
not energized (i = 0 A). The AMB has the task to get the mass from the position at x � 0 µm to the position x = 0 µm.
The AMB coil has a resistance R and an inductance L, which gives us the electrical time constant

τel =
L
R
. (2)

The force of the AMB is equal to kii, where ki is the force constant and i the coil’s current. A further important parameter
is the maximum voltage umax of the AMB system. The dynamic behavior can be described by two simple differential
equations

m
d2x (t)

dt2 − kxx (t) = kii (t) (3)

Ri (t) + L
di (t)

dt
+ ki

dx (t)
dt��������

∼0 V

= u (t) (4)

The following assumptions are made:
• The AMB has no bias current. However, the principle can be also easily applied to AMBs with bias current.
• Linear relationships (no magnetic saturation - linear inductance L, linear force characteristic).
• The power electronics is capable of producing a current between imin =

−umax
R and imax =

+umax
R . Otherwise, the

maximum voltage umax should be adjusted accordingly.
• The induced voltage due to motion ki

dx
dt is usually small and will be neglected in the further investigations.

• The weight force is not considered (usually small compared to the AMB force).
• The temperature of the AMB is constant (constant coil resistance R).
• The sensor (measurement of position x) and the actuator (force kii) are collocated.

2.2. Analytical solution
2.2.1. AMB not energized If the AMB is powerless (i (t) = 0 A) we can easily calculate the position of the body at
the time t. The solution of (3) with the initial conditions x (0) = x0 and dx

dt (0) = v0 is

x (t) = x0 cosh
(

t
τm

)
+ v0τm sinh

(
t
τm

)
. (5)

2.2.2. AMB energized It is possible to solve the differential equations (3) and (4) for a constant input voltage u. The
solution of the system of the differential equations given by (3) and (4) with the initial conditions x (0) = x0, dx

dt (0) = v0
and i (0) = 0 A is

x (t) = − kiu
kxR
+

(
kiumR

kxc
+ x0

)
cosh

(
t
τm

)
+

(
v0τm −

kiuLτm

c

)
sinh
(

t
τm

)
− kiuL2

Rc
e−

t
τel (6)
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In (6) we used the constant c

c = mR2 − kxL2. (7)

Since we can rewrite this equation as
c = kxR2

(
τ2

m − τ2
el

)
(8)

the sign of c tells us whether the mechanical or the electrical time constant is greater.

3. Derivation of characteristic quantities

We will now calculate three different quantities which describe characteristic properties of an AMB:
• The static equilibrium position xbalanced.
• The maximum delay time tdelay,max for a given initial position x0.
• The maximum dynamic start position x0,stable.

Each quantity will be calculated for the AMB parameters given in Table 1.

Table 1 Parameters of an AMB system at 20 ◦C coil temperature.

Parameter Value
m Mass 0.3 kg
kx Value of destabilizing stiffness 150 N/mm

R Resistance 550Ω
L Inductance 0.3 H
ki Force constant 116 N/A

umax Voltage 240 V
τel Electrical time constant 0.55 ms
τm Mechanical time constant 1.41 ms

3.1. Static equilibrium position
We can calculate the theoretical rotor position xbalanced where the maximum force of the AMB (kiimax) is equal to the

destabilizing force (kxxbalanced). This force equilibrium is at the position

xbalanced =
kiumax

kxR
(9)

For the parameters given in Table 1 we get xbalanced = 337 µm. In a feasible AMB system the touch-down bearing
clearance xclearance (compare Fig. 1) must be smaller than the position of force equilibrium (xclearance < xbalanced).

3.2. Maximum delay time
In the 1-DOF AMB with the nominal parameters of Table 1 the electrical system is only 2.5 times faster than the

unstable mechanical system (τel =
τm
2.5 ). Therefore, it is not clear from the outset if the AMB can hold the body in a stable,

force-free position.
To analyze the dynamic behavior given by (3) and (4) we use the Matlab Simulink model shown in Fig. 2. At start of

the simulation the position of the mass is 1 µm above the force free position (x (0) = 1 µm). The initial speed is set to zero
( dx

dt (0) = 0 m/s). Between the mechanical and electrical system we use a transport delay block. Therefore, we can delay
the AMB force by the time tdelay which is equally to use the input voltage

u(t) =


0 V t <= tdelay

−umax t > tdelay
(10)

in equation (4). The negative voltage generates an AMB force in negative x-direction while the destabilizing force acts
in positive x-direction at t = 0 s since x (0) > 0 µm (compare Fig. 1). Note that we can also use the already calculated
solutions (5) for t <= tdelay and (6) for t > tdelay instead of the numerical solver to get the position x of the levitated body.
With (5) we can calculate the position x

(
tdelay

)
and speed v

(
tdelay

)
which can be used as initial conditions in (6).

We want to find the maximum delay time tdelay,max where the position of the levitated body can be brought back to
equilibrium position x = 0 µm. Since we continue to apply the maximum negative voltage −umax in our model the position
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Fig. 2 Matlab Simulink model of the dynamic behavior.

of the mass goes further to x → −∞. The size of tdelay,max is a measure of the stability of the AMB. Fig. 3 shows the
simulation results for different delay times. We can see that the maximum delay where the rotor changes the direction
of movement is tdelay,max = 7.7 ms. If the delay time tdelay gets bigger than 7.7 ms the force produced by the AMB is not
sufficient to pull the mass back to x = 0 µm. If we compare tdelay,max to a typical sampling time Ts of up-to-date DSPs
(0.05 ms < Ts < 0.2 ms) we come to the conclusion that the closed loop control will succeed in stabilizing the system.
This result was verified on a 4-DOF passive magnetic bearing (PMB) and 1-DOF AMB. We succeeded in stabilizing an
AMB which had the parameters shown in Table 1.

If we reduce the mass from m = 0.3 kg to m = 0.045 kg we have equal time constants τel = τm = 0.55 ms. In this
case the maximum delay time reduces to tdelay,max = 2.7 ms. If we additionally change the start position from x (0) = 1 µm
to x (0) = 10 µm we get a maximum delay time of tdelay,max = 1.5 ms. If we increase the initial position to x (0) = 50 µm
the delay time reduces to tdelay,max = 0.6 ms.

The calculation of the maximum delay time tdelay,max has two drawbacks:
• It depends on the initial position x (0).
• It is not possible to find an explicit equation for the maximum delay time.

We will therefore derive a second method to characterize the stability of an AMB in the next section where it is not
necessary to assume an initial position x (0). Furthermore, we can calculate this characteristic quantity using a compact
analytical equation.

3.3. Maximum dynamic start position
We have seen in Fig. 3 that the solution goes to plus infinity (lim

t→∞
x (t) = +∞) if the delay time is to big, i.e., the

body did not return to the equilibrium position. The solution goes to minus infinity (lim
t→∞

x (t) = −∞) if the force of the
AMB succeeded in bringing the mass back to x = 0 µm. As we do not change the applied voltage, the mass goes further
to minus infinity. When we calculate the limit of (6) we get

lim
t→∞

x (t) = lim
t→∞


− kiu

kxR����
const.

+

(
kiumR

kxc
+ x0

)

��������������������������
a=const.

cosh
(

t
τm

)

����������������
→∞

+

(
v0τm −

kiuLτm

c

)

����������������������������������
b=const.

sinh
(

t
τm

)

��������������
→∞

− kiuL2

Rc
e−

t
τel

����������������
→0


(11)

which goes either to plus or minus infinity. Now we can use the mathematical relationship lim
t→∞

(a cosh (t) + b sinh (t)) =
∞ (a + b) and get

lim
t→∞

x (t) = ∞ ·
[(

kiumR
kxc

+ x0

)
+

(
v0τm −

kiuLτm

c

)]
. (12)

If the expression in square brackets is negative the AMB succeeds in pulling the mass back towards the equilibrium
position for the given initial conditions x0 > 0 µm and v0. For a negative initial condition x0 < 0 µm a positive value of
the square brackets expression implies that the body could be brought back towards the equilibrium position.

In our first evaluation (section 3.2) we assumed that the start position of the levitated mass is x (0) = 1 µm. We can
avoid this arbitrary assumption by searching for the maximum position x0,stable, where the AMB is able to bring back the
levitated body to x equal zero. The speed at t = 0 s is defined to be zero (v0 = 0 m/s). As our derivation is based on the
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Fig. 3 Numerical simulation results for the position x (x (0) = 1 µm) and the current i. The voltage of the AMB
is delayed by the time tdelay. If the delay time is below 7.7 ms the levitated body can be brought back to
the equilibrium position x = 0 µm.

analytical solution (6) the start current is also zero (i = 0 A). We can calculate the highest possible start position by using
(12)

x0,stable =
kiuLτm

c
− kiumR

kxc
. (13)

That means that if the voltage u = −umax is applied at t = 0 s and 0 < x (0) <x0,stable the mass can pulled back to
x = 0 µm. For the parameters given in Table 1 we get x0,stable = 244 µm. The position of the mass is plotted in Fig. 4 for
three slightly different starting positions x (0):
• The first curve x (0) = x0,stable shows the theoretical result where the AMB force gets exactly the same magnitude

as the magnetic force after the transient response (ki
−umax

R + kxxbalanced = 0 N).
• The second curve x (0) = x0,stable−1 µm shows that the AMB pulls the body back towards the equilibrium position

x = 0 µm.
• The third curve x (0) = x0,stable + 1 µm shows that this initial condition cannot be stabilized.

In other words: the limit of stability is reached when we move the rotor to the position x0,stable and switch on the AMB
without delay (tdelay = 0 s).

Note that the curves in Fig. 4 do not represent a typical start procedure from a mechanical stop. As it takes time to
impress the AMB coil current, the body is moving even further away from the force free position (x = 0 µm) in the time
range from 0 ms till 4 ms.

4. Normalized characteristic quantities

The quantity xbalanced, defined in (9), describes the static force characteristic of the AMB. A dimensionless, charas-
teristic quantity can be gained by relating xbalanced to the touch-down bearing clearence xclearance

κs =
xbalanced

xclearance
. (14)

The parameter κs should be as high as possible. As the AMB force must at least be high enough to lift the rotor from the
mechanical stop the quantity κs must be greater than one (κs > 1).

A second characteristic, normalized quantity is the relation between the maximum dynamic start position x0,stable and
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Fig. 4 Position of mass for different initial conditions x0.

the force equilibrium position xbalanced

κd =
x0,stable

xbalanced
. (15)

The parameter κd characterizes the quickness of the AMB force generation as well as the instability due to the negative
stiffness k∗x and lies between zero and one (0 < κd < 1). The closer it is to one, the higher is the dynamic capacity
of the AMB system. If we assume zero inductance (L = 0 H) the current can be immediately impressed and we get
x0,stable = xbalanced and therefore κd = 1. The value of κd considers both relevant time constants: τm of the mechanical
system and τel of the electrical system.

The results of the investigated AMB system are summarized in Table 4. For comparison we also calculated the
characteristic quantities for a coil temperature of 100 ◦C. We see that the investigated AMB system is not well suited for
the high coil temperature as the position of the force equilibrium (xbalanced) is very close to the position of the mechanical
stop (xclearance).

Table 2 Characteristic quantities of the investigated AMB system.

Parameter 20 ◦C coil temp. 100 ◦C coil temp.
tdelay,max @ x0 = 1 µm Maximum delay time for the initial cond. x0 7.7 ms 7.5 ms

xbalanced Position of theoretical force equilibrium 337 µm 265 µm
xclearance Touch-down bearing clearance 250 µm 250 µm
x0,stable Maximum dynamic start position 244 µm 203 µm
κs Static force characteristic (κs > 1) 1.35 1.06
κd Dynamic force characteristic (0 < κd < 1) 0.72 0.77

5. Further Investigations

The following topics are planned to be investigated in the further research
• Influence of the number of windings on the characteristic quantities.
• Find a relationship between the presented characteristic quantities and the closed loop stability. How do these

parameters correlate with the AMB transient behavior.
• Comparison of the calculated results with measurements.
• Extension of the principle for the stability analysis of bearingless motors (magnetic bearing is integrated into the

motor unit).

6. Summary

We have derived several characteristic quantities which evaluate the static and dynamic performance of an AMB
system. These quantities can be easily calculated from the basic AMB parameters, no controller design is necessary. The
two normalized quantities are well suited for comparison of different AMB systems.
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