
 

 
1 

ISMB15 
The 15th International Symposium on Magnetic Bearings  

 

 

Using feed-forward back propagation for Rotor Flux 
Estimation of a Bearingless Induction Motor applied in the 

Speed Vector Control 

Lopes, J. S. B. *, Fernandes, J. D. *, Souza, F. E. C *, Santos, L. P. *; Paiva, J. Á. de *, Salazar, A. O. ** 
* Federal Institute of Education, Science and Technology of Rio G. do Norte, Natal, RN, Brazil 

E-mail: jose.soares@ifrn.edu.br 
** Federal University of Rio Grande do Norte, Natal, RN, Brazil 

 
 

Abstract 
This study presents the problem of rotor flux orientation control of induction-type bearingless motor. The key of 
this solution is the estimation of rotor flux. The neural network is able to estimate accurately the rotor flux 
magnitude or position. The bearingless induction motor model is used to obtain the training data and the learning 
technique used was investigated by computer simulation. The bearingless induction motor model characteristics 
were 3,75 kW, two pole-pair, 60 Hz, air-gap length 0.2 mm cage rotor is based on an input-output model. The 
adopted model have balanced three-phase currents and despised the viscous friction of the bearings. The software 
environment used for this simulation was MATLAB® R2010a. The motor equation were solved by using step-
by-step numerical integration with an integration 10-5s. The simulated results showed good performance. It was 
used a simulator based on the finite elements method for acquiring flux density for Bearingless Induction Motor 
model. This paper aims at compensating possible parametric variations of the motor caused by agents such as 
temperature or nucleus saturation and that neural network flux estimation may be a feasible alternative to other 
flux estimation methods. The results obtained by simulation confirm the effectiveness of the method. 

Keywords : Neural network estimation, Rotor flux, Speed control, Bearingless induction motor, Vector control. 

 
1. Introduction 

 
Bearingless Induction Motor (BIM) combine the functionality of a motor and a magnetic bearing into a single electric 

machine (Severson, E.; Gandikota, S.; Mohan, N., 2015), (B. Liu, 2015). Flux estimation is an important part in induction 
machine control (Victor, V.F. et al., 2009). The flux information is used to control induction motors for the purpose of 
synchronous angle and synchronous speed estimations, flux regulation and torque regulation (Lopes, J. S. B. et al., 2014). 

The vector control technique needs flux sensors to determine the exact magnitude and position values of the rotating 
flux. This limitation was resolved with the flux estimator based on vector machine model using as reference the rotor 
flux vector requiring only the stator phase currents and speed mechanics (Rodriguez, E.F.; Santisteban, J.A., 2011). 
Recently, the Neural Networks (NN) are widely used in power electronics and motion control systems.( B. Amarapur, 
2013) and to identify and control nonlinear dynamic system because they can approximate a wide range of nonlineae 
functions to any desired degree of accuracy (K. Sedhuraman, S. Himavathi and A. Muthuramalingam, 2012).  

The NN have the advantage of learning, i.e. to adapt to new situations even if these situations are not learned with 
the network during the training phase (Achkar, R., Nasr, C., Miras, J. D. and Charara, A., 2006).  The use of the NN to 
identify and control nonlinear dynamic systems has been proposed because they can approximate a wide range of 
nonlinear functions to any desired degree of accuracy (K. Sedhuraman, S. Himavathi and A. Muthuramalingam, 2012).  

Buro, N. G, (1994) showed an example of non-stationary rotor behavior with neural network in the filed of control 
for rotor dynamics. Jiang, Y. H., Zmood, R. B., and Qin, L. J. (1996) examined the operation of a magnetic bearing 
system using neural network controllers where the rotor was subjected to external periodic disturbances. Paiva de; J. A., 
Laurindo, M. A., Salazar, A. O. and Stephan (2008) develop in the ANSI C language a neural rotor flux observer 
compensates for parameter variations using a DSP numeric. Kun, L and Xiaofei, C. (2010) proposed a BP neural network 
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controller for suspending control for magnetic suspended flywheel system. In Victor, V.F. et al. (2009) compare the 
performance of bearingless Induction machine with divided winding using two estimators based on NN versus the same 
system using conventional observers. A new control strategy is proposed to decouple the bearingless induction motor 
based on neural network αth-order inverse system approach and internal model control (Zheng-Qi WANG and Xian-Xing 
LIU, 2013). Other approaches to estimate speed use two different kinds of advanced flux observers are evaluated in the 
induction motor with a linear parameter varying observer and kalman filter with simulation results (I. Benlalaoui, S. Drid, 
L. Chrifi-Alaoui, D. Benoudjit, D. Khamari and M. Ouriagli, 2014).  

In this paper is proposed a solution to substitute the flux sensors. To replace the sensor, it is necessary  estimate 
simultaneously the rotor flux position, the torque and the magnetization current using the Neural Network (NN) a single 
structure. It is used the Neural Networks to the motor parameters estimation in order to counterbalance the conventional 
observer limitations which is based on the model for an induction-type bearingless motor. The bearingless machines 
operates as an induction motor and as a magnetic bearing too, acting on the rotor levitation. This feature reduces the 
mechanical losses by friction and minimizes the number of machine maintenance (Paiva de; J. A., Laurindo, M. A. and 
Salazar, A. O., 2013). Thus, this research is an improvement of Victor, V.F. et al. (2009) that worked with two structures 
Neural Networks and continuation of the work of Victor, V.F. et al. (2012). The results simulated in the Matlab® of our 
work showed a good result to estimation of flux with excellent stabilization variation of parameters of the motor.  

 
2. Bearingless Motor with Divided Windings 
2.1 Behavior of the Flux density 

 
It was used a simulator based on the finite element method for acquiring flux density for a model of BIM. Fig. 1 

shows flux density distribution of the rotor in air gap to twice case different of current phase. The Fig. 1 (A) and (B) 
presents the behavior vector of air gap flux when the stator currents are balanced and the rotor is centralized. Rotor 
magnetic field analysis was realized by means of Maxwell tensor method (Victor, V.F. et al., 2012).  

Fig. 1 (C) and (D) shows behavior of air gap flux when the stator currents are unbalanced in order to produce radial 
forces on the rotor to reposition it. For the flux estimation or conventional estimator, is being used the vector model of 
conventional induction machine (Victor, V.F. et al., 2009) and (Achkar, R., Nasr, C., Miras, J. D. and Charara, A., 2006). 
The operating the BIM with the centralized rotor was adopted to be equivalent to the conventional motor model. Thus, 
we consider that the rotor operated centralized with the goal to reduce the system complexity implemented using the 
estimated NN. 
 
 
 
 
 
 
 
 
 
 
2.2 The Flux Model 

 
The bearingless induction machines exhibit significant nonlinearities, creating the need for implementation of control 

systems that combine the classic control techniques with modern model observers (Paiva de; J. A., Laurindo, M. A. and 
Salazar, A. O, 2013). The parameters adopted in BIM were listed in Table 1. It includes some laboratory measured test 
parameters as (per phase) equivalent inductances or resistances (Victor, V. F. et. al. 2012) to be used in simulation models. 

 

 

 
 

Fig. 1 Rotor flux vector behavior (A) and (C) with Rotor magnetic field (B) and (D). 

R1 Stator resistance 1.18 [Ω]  
R2 Rotor resistance 1.42 [Ω] 
J Inertia moment 0.00995 [kg.m2] 
Ls Stator inductance 6.56 [mH] 
Lr Rotor inductance 6.56 [mH] 
Lm Magnetizating inductance 0.14 [H] 

 

Table 1 Equivalent circuit parameters of the motor electric. 

(A)                       (B)                   (C)                      (D) 
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The implemented system is based on the control vector technique that controls the induction machine similar to the 
direct control of the machine current (Leonhard, W., 2001). For the flux estimation or conventional estimator, is being 
used the vectorial model of conventional induction machine (Leonhard, W., 2001). The applied model can be described 
by the following equations (1-5):  

𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑠𝑠𝑠𝑠(𝑡𝑡)

𝑇𝑇𝑚𝑚
− 𝑑𝑑𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑇𝑇𝑚𝑚
      (1) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑛𝑛𝑝𝑝. 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) +

𝑑𝑑𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑇𝑇𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝑡𝑡)

      (2) 

𝑚𝑚𝑀𝑀(𝑡𝑡) = 𝑘𝑘. 𝑖𝑖𝑚𝑚𝑚𝑚(𝑡𝑡)𝑖𝑖𝑠𝑠𝑑𝑑(𝑡𝑡)      (3) 

𝑇𝑇𝑚𝑚 = 𝐿𝐿𝑚𝑚/𝑅𝑅𝑚𝑚         (4) 

𝑘𝑘 = 2
3 (1 − 𝜎𝜎)𝐿𝐿𝑠𝑠       (5) 

where 𝑖𝑖𝑚𝑚𝑚𝑚  is the magnetizing current, 𝑖𝑖𝑠𝑠𝑑𝑑(𝑡𝑡) and 𝑖𝑖𝑠𝑠𝑠𝑠(𝑡𝑡) are the Park currents, 𝜌𝜌(𝑡𝑡) is the rotor flux position, 𝑚𝑚𝑀𝑀(𝑡𝑡) 
is the electric torque, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) is the rotor mechanical speed, 𝑛𝑛𝑝𝑝 is par poles number, 𝑇𝑇𝑚𝑚 is the rotor time constant, 
𝐿𝐿𝑠𝑠 is the stator inductance, 𝐿𝐿𝑚𝑚 is the rotor inductance, 𝑅𝑅𝑚𝑚 is the rotor resistance and 𝜎𝜎 is the scattering factor. The 
estimation of rotor variables was carried out using the rotor flux frame of reference, since it significantly simplifies the 
implementation of the digital system (Victor, V.F. et al., 2009).  

The use of conventional vector model of induction machines in the study of the bearingless induction machine with 
divided windings was only possible due to the similarity between their stators structures. Such similarities are equivalent 
on both models allowing the implementation of the speed and radial positioning controllers (Ferreira, J. M. S., Zucca, 
M., Salazar, A. O., Donadio, L., 2005). To compensate the limitations imposed by observers based on models with fixed 
parameters, this work proposes a flux neural observer composed of one multilayer feedfoward neural networks.  
 
3. System Description 

 
Fig. 2 contains Bearingless motor system control which is composed by the current transformation blocks, PWM 

command, PIDs controllers, power inverter and other auxiliary circuit related. The rotor flux referential estimated to 
implement the speed controller. The block of Neural Networks Estimator represent complex systems by simple models 
(Narendra, K.S.; Mukhopadhyay, S., 1997). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 shows three closed-loop proportional-integral control that composes speed control, torque control, 
magnetizing current control and other PID blocks, which are the displacement controls. The controllers are in series with 
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the speed controller; the torque control is responsible for generating the reference torque current; the third controls the 
magnetizing current, which is responsible for generating the current reference field (Paiva, J. Á., 2007).  
 
4. Design and analysis of Neural Network 

 
The first step of an NN supervised training is to compile the input and output data set. The inputs and outputs are 

used to adjust the internal parameters of the network (T. H. dos Santos, A. Goedtel, S. A. O. da Silva and M. Suetake, 
2011). The NN is fully connected. Besides, a bias signal is coupled to all the neuros of the hidden and output layers 
through a weight. The database has been developed for 20200 samples, which are obtained by varying based the criteria 
on Victor, V.F. et al., 2009. The training process was realized on  the offline mode. During the training process was 
applied variations on the following parameters and signals: rotor time constant, torque electric and speed mechanical 
every 2 second step on a random basis. The time period of training was 40 seconds. The table 1 shows the parameters of 
the proposed network. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The Levenberg-Marquardt algorithm was chosen to training methods because provides the best accuracy for a given 

architecture (K. Sedhuraman, S. Himavathi and A. Muthuramalingam, 2012). It is very efficient when training networks 
have up to a few hundred weights(Jianbo Sun, Qionghua Zhan and Liming Liu, 2005). So it is chosen as the learning 
algorithm for Neural Network training in this paper. The proposed estimator is structured as shown in Fig. 2 where the 
input data {𝑖𝑖𝑑𝑑(𝑡𝑡), 𝑖𝑖𝑖𝑖(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)} and output data {𝑚𝑚𝑚𝑚(𝑡𝑡), 𝑝𝑝(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑖𝑖𝑚𝑚𝑚𝑚(𝑡𝑡)}. This topology was chosen after 
several performance tests with different numbers of layers and neurons per layer. Fig. 3 shows the training, validation 
and test performances given the training record. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3, the R value is an indication of the relationship between the outputs and targets. The valeu R = 0.99978 

Network architecture Perceptron multilayer 
Type of training Supervised 
Number of layer 3 
Neurons of the input 3 
Neurons of the 1st hidden layer 15 
Neurons of the 2st hidden layer 10 
Neuros of the output 3 

Training algorithm 
Levenberg-Marquardt 
backpropagation 

Learning rate 5e-2 
Epochs 160 
Square error goal 7.4154e-6 
Hidden layer activation function Hyperbolic tangent 
Output layer activation function Linear 

 

Table 1  Parameters of the proposed network. 

(A)                     (B)                        (C) 
Fig. 3 Represent the training (A), validation (B), and testing data (C). 
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indicates that there is a next relationship between outputs and targets. The weight and threshold of the network are saved. 
The change of the MSE factor in different epochs of the network is shown in Fig. 4. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

6. Simulation Results 
 
The software environment used for this simulation was MATLAB® R2010a. The motor equation are solved using 

step-by-step numerical integration with an integration 10-5s. It was used the Euler discretization method. Inputs and 
outputs were normalized to facilitate the process training data. To validate the performances of the proposed estimator 
NN, was provided a series of simulations for different references. The simulation tests involves the following operating 
sequences: the motor is required to reach the reference value 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 1800 rpm in the interval of time[0 − 3.367𝑠𝑠], 
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 1000 rpm for [3.368 − 6.734𝑠𝑠] and 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 1400 rpm for [6.735 − 10𝑠𝑠], Fig. 5 (A).  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

The range of simulation time was 10 seconds. Fig. 5 (B) shows the signal of currents when changed speed 
reference. Fig. 6 shows comparative results between the motor torques. 

 
 
 
 
 
 
 
 
 
 
 

(A)                                               (B) 
Fig. 5 Behavior of speed with conventional flux and NN (A) and current control (B). 
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Fig. 4 The performance of the network for different epochs. 

Fig. 6 Behavior of torque currents. 
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Fig. 7 and 8 show the current signal behavior 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘), 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘). The 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘) and 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘) currents tend to continuous 
and constant values, and the field current tends to the maximum amplitude of the phase currents. Fig. 9 shows the angular 
speed of the rotor flux. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 shows the angular position in a zoom range from 0 to 0.2 seconds. We observe this result timing of both 𝜌𝜌(𝑡𝑡) 

for the estimators. From these simulations, we can infer that the Neural Network estimator had good results on behavior. 
Thus, all motor’s parameters are time varying, in particular, the rotor time constant which is extremely affected by the 
heating effect (Leonhard, W., 2001). In this study case, the 𝑇𝑇𝑅𝑅 parameter changed its value at 10% of its value. So, 
Neural Network estimator don suffer parametric variations. Neural Network exhibits better results due to its learning 
capability. 
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Fig. 9 Behavior of position of rotor flux. 

Fig. 8 Current signal behavior 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘). 

Fig. 7 Current signal behavior 𝑖𝑖𝑆𝑆𝑆𝑆(𝑘𝑘). 
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7. Conclusion 
 
This paper shows the implementation of a Neural Network allows the representation of the knowledge. The validity 

of the proposed estimator Neural Network is confirmed through the simulation results with supervised training process 
in off-line mode. We investigated the Neural Network estimator in a closed loop system with three controllers: speed 
control, torque control and the magnetizing current control – all of which are arranged in series. Accuracy fast estimation, 
simplicity of design and insensitivity to rotor time constant are the advantages of this method. We investigated the Neural 
Network estimator in a closed loop system with three controllers are arranged in series. Forthcoming researches will 
investigate estimator NN in an experimental prototype in the laboratory. Implementation on DSP of the NN and studying 
the behavior of all process. 
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