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Abstract 
Superconducting magnetic bearings (SMBs) have some advantages compared with mechanical bearings. 
However, whirling amplitude of a rotor supported by SMB tends to be large near the critical rotational speed 
because of their low damping. Furthermore, complicated phenomena of dynamics can be generated due to 
nonlinearity of the levitation force. Therefore it is necessary to reduce the amplitude by considering the effect 
of the nonlinearity on dynamics during passing through the critical speed in applications. In this paper, we 
investigated resonant amplitude reduction of a rotor supported by two movable superconducting bulks (SCs). 
For this purpose, we first introduced an analytical model consisting of a rotating permanent magnet and the 
unfixed SCs that can move around the rotor and are connected with springs. We evaluated electromagnetic 
force by the advanced mirror image method and derived governing equations of the rotor at an arbitrary 
rotational speed. From the nondimensionalized equations of motion, we predicted that internal resonance 
between whirling of the rotor and swinging of the SCs can occur if the ratio among the natural frequencies of 
those motions is an integer ratio. We also performed numerical calculation of equations of motion. The 
numerical results show that internal resonance can occur at around the critical speed and that as a result 
reduction of the resonant whirling amplitude can be achieved by the swinging SCs at around the critical speed. 

Keywords : Internal Resonance, Rotor Dynamics, Superconducting Bulk, SMB, Nonlinear Analysis, Nonlinear 
Coupling, Amplitude Reduction 

 
1. Introduction 

 
High-Tc superconducting magnetic levitation has a feature of noncontact stable levitation. Some applications of this 

systems are superconducting magnetic bearings (SMBs) [1]-[4]. Compared to mechanical bearings, SMBs have various 
merits such as low damping, high energy efficiency and utilization under special environment due to maintenance-free 
property because they are able to support a magnet without physical contact. However, whirling amplitude of a rotor 
supported by SMB tends to be large near the critical rotational speed because of their low damping. Therefore it is 
necessary to reduce the resonant amplitude in systems utilizing SMBs. Several solutions for this subject include 
removing unbalance, adding damping and utilizing internal resonance [5]-[7] between multiple oscillation modes 
coupled nonlinearly. 

Concerning the latest solution utilizing internal resonance, R. Kawana, et al. investigated motion of a rigid 
rectangular-shaped body connected with three springs and having a rotor with unbalance. They performed nonlinear 
analysis of the rotor with internal resonance caused by geometrical nonlinearity. In addition, they numerically and 
experimentally clarified that internal resonance can reduce the amplitude of the rotor [8]. R. Sakaguchi, et al. 
investigated nonlinear dynamics of a superconducting magnetic levitation system that consists of two permanent 
magnets on a rigid bar and two superconducting bulks under the bar. They numerically and experimentally confirmed 
that the amplitude of horizontal oscillation at its natural frequency is reduced because internal resonance is caused by 
magnetic nonlinearity transferring the kinetic energy from longitudinal oscillation to lateral one [9]. We considered 
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whirling amplitude of a rotor can be reduced from R. Kawana’s research and R. Sakaguchi’s one utilizing internal 
resonance caused not by geometrical nonlinearity but by magnetic nonlinearity. 

Therefore, in this study, by numerical analysis, we investigated resonant amplitude reduction of a rotor supported 
by SMBs utilizing internal resonance. 
 
2. Analytical model and governing equations 

 
Figure 1 shows an analytical model seen from side and top. A permanent magnet (PM) is supported by a couple of 

superconducting bulks (SCs). Each SC is connected with one spring in order to receive restoring force. Figure 2 shows 
coordinates related to the PM. The SCs can move keeping a constant distance R from the initial position of the PM. We 
define the angle of the moving SCs as θ. We regard the restoring force due to the springs as linear with respect to θ. The 
PM rotates at angular velocity ω and is assumed to move in the horizontal direction x and y. Suppose that we transform 
to a new coordinate system O-x’y’, which has the same origin as O-xy and is obtained by rotating the coordinate axes of 
O-xy through the angle θ about O. Therefore, the relationship of the two previous coordinates are described as follows: 

x’ =    𝑥𝑥cos𝜃𝜃 + 𝑦𝑦sin𝜃𝜃 (1) 
y’ = −𝑥𝑥sin𝜃𝜃 + 𝑦𝑦cos𝜃𝜃 (2) 

The SC in the negative y’ area is represented as SC1 and the opposite SC as SC2. We utilized the advanced mirror 
image method [10] in order to evaluate the electromagnetic force. In this method, we consider each of the SCs as sum 
of mirror image (MI1) of the magnet at initial position (Mag1) and mirror image (MI2) of the magnet at present 
position (Mag2). MI1’s and Mag1’s magnetization vectors are oriented in the same direction, while MI2’s and Mag2’s 
one are in the opposite direction. Thus, the moved PM is affected by these mirror images in SCs. 

Electromagnetic forces Fx’1 and Fy’1 due to the mirror images in the SC1 act on the PM, and Fx’1 due to the PM 
acts on the frozen mirror image (MI1). Fy’12 due to the PM act on the moving mirror image. Fx’2 and Fy’2 for SC2 are 
also given in the same way. Using that method, the equations of electromagnetic forces are derived as follows: 

Fx’1 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0

𝑥𝑥′

{𝑥𝑥′2 + (𝑦𝑦′ + 2𝑅𝑅)2}
5
2
 (3) 

Fy’1 = 𝐹𝐹𝑦𝑦’11 + 𝐹𝐹𝑦𝑦’12 (4) 

Fy’11 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0
[ 𝑦𝑦′ + 2𝑅𝑅

{𝑥𝑥′2 + (𝑦𝑦′ + 2𝑅𝑅)2}
5
2

− 1
16(𝑦𝑦′ + 𝑅𝑅)4] (5) 

Fy’12 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0

1
16(𝑦𝑦′ + 𝑅𝑅)4 (6) 

Fx’2 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0

𝑥𝑥′

{𝑥𝑥′2 + (𝑦𝑦′ − 2𝑅𝑅)2}
5
2
 (7) 

Fy’2 = 𝐹𝐹𝑦𝑦’21 + 𝐹𝐹𝑦𝑦’22 (8) 

Fy’21 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0
[ 𝑦𝑦′ − 2𝑅𝑅

{𝑥𝑥′2 + (𝑦𝑦′ − 2𝑅𝑅)2}
5
2

− 1
16(𝑦𝑦′ − 𝑅𝑅)4] (9) 

Fy’22 = − 3𝑀𝑀2

4𝜋𝜋𝜇𝜇0

1
16(𝑦𝑦′ − 𝑅𝑅)4 (10) 

Here M is magnetic moment of the PM with dipole approximation and 𝜇𝜇0 is the permeability of vacuum. Using 
Eq.(1)-(10), the equations of motion of the PM and the SCs are derived as follows: 

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 = (𝐹𝐹𝑥𝑥′1 + 𝐹𝐹𝑥𝑥′2)cos𝜃𝜃 − (𝐹𝐹𝑦𝑦′1 + 𝐹𝐹𝑦𝑦′2)sin𝜃𝜃 + 𝑚𝑚𝑚𝑚𝜔𝜔2cos𝜔𝜔𝜔𝜔 (11) 

𝑚𝑚�̈�𝑦 + 𝑐𝑐�̇�𝑦 = (𝐹𝐹𝑥𝑥′1 + 𝐹𝐹𝑥𝑥′2)sin𝜃𝜃 + (𝐹𝐹𝑦𝑦′1 + 𝐹𝐹𝑦𝑦′2)cos𝜃𝜃 + 𝑚𝑚𝑚𝑚𝜔𝜔2sin𝜔𝜔𝜔𝜔 (12) 

𝐼𝐼�̈�𝜃 + 𝑐𝑐𝜃𝜃�̇�𝜃 = −2𝑘𝑘𝜃𝜃𝜃𝜃 + 2𝑅𝑅(−𝐹𝐹𝑥𝑥′1 + 𝐹𝐹𝑥𝑥′2) − 𝑥𝑥′(𝐹𝐹𝑦𝑦′12 + 𝐹𝐹𝑦𝑦′22) (13) 
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Here m is mass of the PM, c and cθ are damping coefficients of this system, kθ is the product of the spring constant and 
the moment arm, and I is moment of inertia of this system. The dot symbol denotes derivation with respect to time t. 
Equations (11) and (12) show that PM’s movement in the x and y directions and SC’s swinging in the θ direction are 
nonlinearly coupled with each other. Equations (11)-(13) can be expanded into Taylor series around the origin of the 
coordinates (O) up to the 3rd order terms as follows: 

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 = −2𝑘𝑘1𝑥𝑥 + 2(𝑘𝑘5 − 𝑘𝑘1)𝑦𝑦𝑦𝑦 − 2𝑘𝑘3𝑥𝑥𝑦𝑦2 − 2𝑘𝑘5𝑥𝑥𝑦𝑦2 + 2𝑘𝑘4𝑥𝑥3 + 𝑚𝑚𝑚𝑚𝜔𝜔2cos𝜔𝜔𝜔𝜔 (14) 

𝑚𝑚�̈�𝑦 + 𝑐𝑐�̇�𝑦 = −2𝑘𝑘5𝑦𝑦 + 2(𝑘𝑘5 − 𝑘𝑘1)𝑥𝑥𝑦𝑦 − 2𝑘𝑘3𝑥𝑥2𝑦𝑦 − 2𝑘𝑘1𝑦𝑦𝑦𝑦2 − 2𝑘𝑘6𝑦𝑦3 + 𝑚𝑚𝑚𝑚𝜔𝜔2sin𝜔𝜔𝜔𝜔 (15) 

𝐼𝐼�̈�𝑦 + 𝑐𝑐𝜃𝜃�̇�𝑦 = −2𝑘𝑘𝜃𝜃𝑦𝑦 + 2(𝑘𝑘7 − 2𝑅𝑅𝑘𝑘2)𝑥𝑥𝑦𝑦 − 2(𝑘𝑘7 − 2𝑅𝑅𝑘𝑘2)𝑥𝑥2𝑦𝑦 + 2(𝑘𝑘7 − 2𝑅𝑅𝑘𝑘2)𝑦𝑦2𝑦𝑦 (16) 

where kn (𝑛𝑛 = 1,2, ⋯ ,7) are coefficients of terms appearing in the expanded form of Eq. (11)-(13). Equations (14)-(16) 
can be nondimensionalized using the following relations: 

𝑥𝑥 = 𝑅𝑅𝑥𝑥∗ , 𝑦𝑦 = 𝑅𝑅𝑦𝑦∗ , 𝜔𝜔 = √
𝑚𝑚

2𝑘𝑘5
𝜔𝜔∗ = 1

𝜔𝜔𝑦𝑦
𝜔𝜔∗ (17) 

Nondimensional equations of motion are obtained as below. 

�̈�𝑥 + 2𝛾𝛾�̇�𝑥 = − 1
4 𝑥𝑥 + 3

4 𝑦𝑦𝑦𝑦 − 15
16 𝑥𝑥𝑦𝑦2 − 𝑥𝑥𝑦𝑦2 + 5

32 𝑥𝑥3 + 𝜖𝜖𝑣𝑣2cos𝑣𝑣𝜔𝜔 (18) 

�̈�𝑦 + 2𝛾𝛾�̇�𝑦 = −𝑦𝑦 + 3
4 𝑥𝑥𝑦𝑦 − 15

16 𝑥𝑥2𝑦𝑦 − 1
4 𝑦𝑦𝑦𝑦2 − 35

4 𝑦𝑦3 + 𝜖𝜖𝑣𝑣2sin𝑣𝑣𝜔𝜔 (19) 

�̈�𝑦 + 2𝛾𝛾𝜃𝜃�̇�𝑦 = −𝑘𝑘𝜃𝜃𝜃𝜃𝑦𝑦 + 𝑘𝑘𝜃𝜃𝜃𝜃𝑦𝑦𝑥𝑥𝑦𝑦 − 𝑘𝑘𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑥𝑥2𝑦𝑦 + 𝑘𝑘𝜃𝜃𝑦𝑦𝑦𝑦𝜃𝜃𝑦𝑦2𝑦𝑦 (20) 

 
where the asterisks denoting nondimensional variables are omitted for simple description. Here 𝛾𝛾 and 𝛾𝛾𝜃𝜃 are the 
nondimensional damping coefficients of this system, 𝑣𝑣 is the nondimensional rotational speed defined by the ratio of ω 
to ωy, and 𝜖𝜖 is the nondimensional eccentricity. Other constants such as kθθ and kθxy are also nondimentional ones. From 
Eq. (18)-(20), it is found that the ratio of the natural frequencies of the rotor’s oscillation in the x direction ωx to y 
direction ωy is theoretically 1 to 2. 

Generally, if there is an integer ratio between natural frequencies in a multi-degree-of-freedom system which has 

Fig. 1 Analytical model. 

(b) Top view. 

Fig. 2 Coordinates and forces exerted on the magnet. 

(a) Side view. 
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quadratic nonlinear coupling terms such as xθ, yθ and xy, internal resonance between corresponding motions can 
simultaneously occur and the kinetic energy can be exchanged between them. We considered that by adjusting 𝑘𝑘𝜃𝜃𝜃𝜃, the 
ratio of the natural frequency of the rotor’s oscillation in the y direction ωy to that of the SCs’ swing motion ωθ can be 2 
to 1. It is expected that amplitude reduction of y can be achieved by energy transfer from y to θ caused by internal 
reasonance between the two motions. 

 
3. Numerical Calculation 

 
We performed numerical calculation of Eq. (11)-(13) by means of the Runge-Kutta method, taking nonlinear terms 

into consideration. We dealt with two different conditions: (a) with the SCs unfixed with optimal springs that adjust the 
ratio of ωy to ωθ to be 2 to 1 and (b) with the SCs fixed. Figure 3 shows frequency responses of y and θ obtained by 
decreasing the rotational speed. It is found that in (a) the amplitude of y is reduced at around the critical speed v＝1.0 
compared with the amplitude of y in (b). On the other hand, the amplitude of θ is increased in (a). Figure 4 shows time 
histories and FFT spectra of y and θ at v=1.0. It is found that the frequency of the main component in the y direction is 
1.0, while that in the θ direction is 0.5. Therefore, this amplitude reduction of y at around the critical speed v＝1.0 is 
caused by internal resonance between the rotor’s whirling and the SCs’ swinging, which transfers the kinetic energy 
from y to θ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
4. Conclusion 

 
In this study, we numerically investigated nonlinear dynamics of a rotor supported from its sides by a couple of 

superconducting bulks. From derived governing equations for dynamics of the system with optimal springs attached to 
the superconducting bulks, we predicted that internal resonance between whirling of the rotor and swinging of the SCs 
can occur by quadratic nonlinear terms of the electromagnetic forces. In addition, we performed numerical calculation 
taking nonlinear terms into consideration. Numerical results show that the whirling amplitude can be reduced by 
internal resonance at around the critical speed. 
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