
ISMB15

Comparison between optimized topologies of permanent
magnet thrust bearings with back-iron

Maxence VAN BENEDEN∗, Virginie KLUYSKENS∗ and Bruno DEHEZ∗
∗ Center for Research in Mechatronics (CEREM)

Universit catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
E-mail: maxence.vanbeneden@uclouvain.be

Abstract
This paper deals with the optimization and the comparison of passive magnetic thrust bearings made up of radial
stacks of permanent magnet rings. Various topologies are considered, depending on the polarization direction of
the permanent magnet rings and the presence of back-iron. The coulombian approach and the method of image
charges are used to determine the load capacity of topologies with back-iron. On this basis each topology is
optimized in order to minimize the permanent magnet volume for a fixed load capacity, airgap thickness and
remanent flux density. Varying these parameters, scaling laws of the optimum permanent magnet ring dimensions
are derived to allow fast sizing and comparison of the topologies. The latter highlights that the topology with
Halbach configuration and back-iron is the most performant, but that the topology with axial polarization is almost
as good.

Key words : Bearings, back-iron, coulombian approach, method of image charges, optimization, permanent mag-
nets.

1. Introduction

Passive thrust bearings are made of permanent magnet (PM) rings. The PM rings can be radially or axially stacked
(Yonnet, 1991) in order to increase the axial force. Topologies with (Sotelo, de Andrade and Ferreira, 2007) or without
(Yoo, Kim, Kim, Lee, Bae, and Noh, 2011) soft magnetic materials are studied in the literature. The use of highly perme-
able material (back-iron) increases the performance of PM bearings for a same PM volume (Jungmayr, Marth, Amrhein,
Berroth and Jeske, 2014).

From another point of view, the actual trends consists in limiting the use of PM material, because of the limited
amount of resource for rare earth material and because of economical reasons. It is thus important when working with
PM thrust bearings to take care of minimizing the required volume of PM.

Fig. 1 Thrust bearing with radially stacked permanent magnet rings, and
with back-iron (in dark grey).

Different models based on coulombian approach (Yonnet, 1978), (Ravaud, Lemarquand, and Lemarquand, 2009) are
developed to predict the forces between magnets. In the article of Jungmayr, Marth, Amrhein, Berroth and Jeske (2014),
the method of image charges is used to model the influence of the soft material.

Parametric optimizations of particular PM thrust bearings can be found in the literature (Moser and Bleuler, 2006)
(Bekinal, Anil, and Jana, 2013) (Yoo, Kim, Kim, Lee, Bae, and Noh, 2011), but to the author’s best knowledge there is no
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complete and transverse study comparing the performances between the different topologies.

This paper presents passive thrust bearings made of PM rings radially stacked like shown in Fig. 1. The influence
of back-iron is studied. Different topologies are considered with axial and/or radial polarization. Each one of these
topologies is optimized with the objective to minimize the required volume of PM needed to carry a given axial load.
Their performances are compared between them and with the performances of ironless PM thrust bearing (Van Beneden,
Kluyskens and Dehez, 2015). This paper presents also scaling laws that allows fast sizing of the optimal magnet dimen-
sions.

The structure of this paper will be as follows. First, the topologies of PM thrust bearings considered in this paper are
presented in section 2. Then in section 3, these topologies are modelled and this model is validated by finite element model.
In section 4, each topology is optimized separately with the objective to minimize the magnet volume. The influence of
the number of pairs of rings, the load, the air gap and the remanent flux densities is shown. Finally, topologies with and
without back-iron are compared in section 5.

2. Bearing topologies

The studied PM bearings are made of two radial stacks of PM rings, disposed coaxially, one of the stacks being linked
to the rotor, and the other one to the stator. The polarization of each magnet ring can be axial or radial. Combinations of
these polarizations are also investigated, like the perpendicular structure or the Halbach structure (Halbach,1980) . For
each case, an iron frame is placed at the back of the structure. Figure 2, we find the 4 different considered topologies.

Fig. 2 The different considered topologies, with back-iron (in dark grey).

The dimensions of each topology can be described by 4 parameters illustrated in Fig. 3. They are the height h and
the width b of the ring section, the gap ζ in between the rings and the external radius Rext. The gap ζ is considered because
it improves the axial force (Yoo, Kim, Kim, Lee, Bae, and Noh, 2011). In the case of the Halbach structure (Top 4), there
is no space between rings but the width of the ring section can be different for both polarization direction : b1 and b2. The
last parameter is the total length L of PM illustrated in Fig. 4. Different magnet bearings are presented with the same total
length but different numbers of pairs of rings N. This parameters depends on the others and is calculated by :

L = 2 × π ×
( N∑

i=1
Rs,i +

N∑

i=1
Rr,i

)
, (1)

where Rs,i and Rr,i are the mean radius of PM rings from 1 to N of the stator and the rotor respectively. This parameter is
presented because of its interest in section 4.

3. Modelling

In the literature, we can find different models based on coulombian approach to evaluate the axial force between
magnets for the three polarization possibilities (axial, radial and perpendicular). A 2D plane approach was developed
by Yonnet (Yonnet, 1978). The complete resolution is analytical but the curvature effect is not considered. As shown
in a previous article (Van Beneden, Kluyskens and Dehez, 2015), the curvature effect can be neglected by considering
topologies with Re > 2b + g where Re is the mean radius of the air gap.

The back-iron can be modelled by the method of image charges (Plonsey, 1961) (Jungmayr, Marth, Amrhein, Berroth
and Jeske, 2014) as shown in Fig. 5, considering infinite the magnetic permeability of the back-iron. On this basis, the
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Fig. 3 The parameters of the optimization : h the height of the ring
section ; b th width of the ring section ; ζ the gap between
rings ; g the air gap ; Rext the external radius.

Fig. 4 Top view of of PM bearing with the same total length L but
different number of rings N.

Fig. 5 Illustration of the Coulombian approach and method of image
charges for (a) axial polarization, (b) radial polarization and (c)
perpendicular polarization.

axial force fr,s exerted on the ring r by the ring s is calculated by the double sum of the forces exerted on the rotor rings
ri by the stator rings s j (real for i, j = 0 and virtual i, j ≥ 1) :

fr,s =
Nmirror=∞∑

i=0

Nmirror=∞∑

j=0
fri,s j , (2)

The convergence of the sum is studied by comparing the results for different values of Nmirror. The convergence of
this sum is shown in Fig. 6. The axial force calculation converges for Nmirror ≥ 3. This convergence depends on the shape
of the ring section : if the height h is small in comparison of the air gap g and the width b, the convergence appears for a
bigger Nmirror. This will be verified a posteriori.

Parameter Value
h Magnet section height 7.5 mm
b Magnet section width 15 mm

Rext External radius 400 mm
Br Remanent flux density 1 T
g Air gap 2 mm
N Number of rings 1

Fig. 6 Convergence of the axial force Fz with the number on partial sum Nmirror in % of the relative error :

error = FNmirror=15
z −FNmirror

z

FNmirror=15
z

. The value of the parameters is given in the Table.

The total axial force Fz of the topologies made of stacks of N PM rings of Fig. 2 is calculated by the double sum
from 1 to N of the force fr,s exerted by the stator rings s on the rotor rings r :

Fz =
N∑

s=1

N∑

r=1
fr,s. (3)
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As shown in Fig. 7, the model , in which Nmirror is fixed to 3 , is validated by finite element method (FEM), in which
the iron permeability is set to 5000.

Parameter Value
h Magnet section height 12 mm
b Magnet section width 15 mm
ζ Magnet section space 2 mm

Rext External radius 400 mm
Br Remanent flux density 1 T
N Number of rings 7

Fig. 7 Axial force Fz for each topology as a function of the air gap g. Points : FEM ; Lines : analytical model.
The value of the parameters is given in the Table.

4. Optimization

The optimization of the different topologies is made by a hybrid algorithm that combines a NSGAII and a simplex
with penalty method algorithms. The objective function to minimize is the magnet volume V . The constraint is to carry
the axial load Fz ≥ Fz,re f . The optimization parameters are the magnet section height h, the magnet section width b for
Top 1, Top 2 and Top 3 and b1 and b2 for Top 4, the magnet section space ζ and the external radius Rext. The fixed
parameters are the air gap g, the remanent flux density Br and the number of rings by stack N.

In a first step, the influence on the optimal parameters of the number of rings N is studied. Secondly, the influence
of the other input parameters (Fz,re f , g and Br) on the optimal parameters are studied. From these results, scaling laws on
these parameters are derived.

4.1. Influence of the number of rings
The influence of the number of rings N is studied in this section. Each topology is optimized separately. The number

of PM rings N is increased from 3, 5,... to 29. The other input parameters are set to Fz,re f = 50 [kN], g = 1 [mm] and
Br = 1 [T ].

As shown in Fig. 8, the optimal magnet volume VN
opt converges asymptotically with the number of pairs of rings N.

This convergence is due to a decrease of the edge effect with the number of pairs of rings N. If the edge effect are ne-
glected, there is a theoretical optimal value of the minimum magnet volume Vopt. When the number of rings N continues
to increase, the volume converges towards this theoretical optimal volume Vopt until the activation of other constraints like
geometrics constraints on the minimum radius forces the minimum magnet volume to increase again.

Fig. 8 Evolution of the minimum magnet volume VN
opt with the number of

pairs of rings N.

Figure 9 shows the evolution of the optimal geometrical parameters with the number of pairs of rings N : hN
opt, bN

opt,
ζN

opt, LN
opt. These parameters converge also with the number of pairs of rings N until a theoretical optimal value : hopt,
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Fig. 9 Evolution of the geometrical parameters : the height hN
opt and the

width bN
opt of the ring section, the space between the ring ζN

opt and
the total length LN

opt with the number of rings N.

bopt, ζopt, Lopt. The use of the total length L as parameters is interesting because it converges with the number of rings in
contrary of the radius.

For the rest of this paper, the effect of the number of rings will be neglected by considering a number of pairs of rings
large enough : N = 11. To be quite rigorous, correction function should be introduce to take into account the influence of
the edge effect (Van Beneden, Kluyskens and Dehez, submitted).

4.2. Influence of the load, the air gap and the remanent flux density
The influence of the load Fz,re f , the air gap g and the remanent flux density Br are studied. Each topology is optimized

separately. As explained above, the number of pairs of rings is set to N = 11. The range of variation of the parameters
under study are: Fz,re f = [10 20 ... 50] [kN], g = [0.5 1 ... 2.5] [mm] and Br = [0.8 1.0 1.2] [T ].

The result for Top 5 is given in Fig. 10 and Fig. 11. From these results, scaling laws of the magnet volume and
magnet parameters can be derived as a function of the load, the air gap and the remanent flux density. The scaling laws for
the magnet volume and magnet parameters are given in Eq. (4) and Eq. (5) respectively. The same procedure is presented
for topologies without back-iron in (Van Beneden, Kluyskens and Dehez, 2016).

Fig. 10 Evolution of the optimal volume with the load Fz,re f =

[10 20 ... 50] [kN] and the air gap g = [0.5 1.0 ... 2.5] [mm].

Vopt = α × g × Fz,re f ×
1
B2

r
. (4)

hopt = β × g bopt = γ × g ζopt = δ × g Lopt = ϵ ×
Fz,re f

g
× 1

B2
r
. (5)
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Fig. 11 Evolution of the geometrical parameters with the load Fz,re f =

[10 20 ... 50] [kN] and the air gap g = [0.5 1.0 ... 2.5] [mm].

with α, β, γ, δ and γ the scaling factors. The latter depend on the bearing topology and they are given in Table 1.

Table 1 Scaling factors for the optimum PM volume and optimum parameters.

α × 10−5 [ m2T 2

N ] β [−] γ [−] δ [−] ϵ × 10−5 [ m2T 2

N ]
Top 1 2.22 0.728 2.07 0.663 1.47
Top 2 5.41 2.41 2.37 0.753 0.945
Top 3 4.25 1.64 2.19 0.834 1.18
Top 4 2.12 1.07 2.10 ; 0.844 0 1.27

For the Halbach structure (Top 4), there is two scaling factors γ : 2.10 linked to the axial polarization and 0.844
linked to the radial polarization.

5. Comparison

In this section, topologies with and without back-iron are compared based on the minimum magnet volume. To that
purpose, the optimal magnet volume are expressed in percentage of the optimal magnet volume of the Halbach topology
with back-iron (Top 4BI) :

VTop i
opt

VTop 4BI
opt

=
αTop i × g × Fz,re f × 1

B2
r

αTop 4BI × g × Fz,re f × 1
B2

r

=
αTop i

αTop 4BI , (6)

with i the different topologies : without back-iron 1, 2, 3, 4 and with back-iron 1BI, 2BI, 3BI and 4BI. As shown in
Eq. (6), the ratio between the optimal volume are independent of the load, the air gap and the remanent flux densities.
The results for topologies without back-iron are taken from (Van Beneden, Kluyskens and Dehez, 2016). The results of
the comparison are summarized in Table 2 where ∆ is the gain in percentage of PM volume using back-iron, for each
topology.

Table 2 Comparison between topologies with and without back-iron in percentage of the Halbach topology with
back-iron VTop 4BI

opt . ∆ is the difference between topology with BI and without BI.

VTop i
opt

VTop 4BI
opt

Without BI With BI ∆

Top 1 176 105 71
Top 2 176 255 -80
Top 3 180 201 -20
Top 4 105 100 5

On the one hand, we can see that the use of back-iron is advantages for some topologies (Top 1 and Top 4) but is
harmful for others (Top 2 and 3). For Top 2 and Top 3, with radial polarization and perpendicular polarization respectively,
the back-iron deviates the magnetic flux produced by PM out of the air gap. Therefore, the axial force is impacted nega-
tively. This effect is stronger for Top 2. For Top 1 and Top 4, with axial polarization and Halbach structure respectively,
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the effect of the back-iron is positive since it closes the magnetic circuit followed by the magnetic flux behind the PM.
This effect is stronger for Top 1.

On the other hand, we can see that Halbach structure with back-iron is the best (Top 4BI). The use of back-iron is
slightly benefit (5%) for this topology. By contrast, the use of back-iron for topology with axial polarization (Top 1) is
large (71%). Consequently the minimum PM volume required in Top 1BI, with axially magnetized permanent rings, and
back-iron, is identical to the needed PM volume in Top 4, for a Halbach structure without back-iron. This volume is even
very close to the needed volume for Top 4BI, the Halbach structure with back-iron. Considering that Halbach structure is
often difficult to produce, Top 1BI is a competitive topology.

6. Conclusion

This paper compares different PM thrust bearing topologies. In a first step, the different topologies with back-iron
are presented. The Coulombian approach and method of image charges are used and validated by finite element method.
Secondly, the influence of the number of rings N on the optimum for each topology is shown and can be neglected for N
large enough. Thirdly, the influence of the load Fz,re f , the air gap g and the remanent flux Br is evaluated on the optimum
and scaling laws are derived. Finally, based on these results, the topologies with and without back-iron are compared. In
the iron-less topologies, the Halbach structure (Top 4) gives better result than the other topologies. Thanks to the use of
back-iron, the results on the magnet volume for Top 1, with only axially polarised magnet, are close to results for Halbach
iron-less topology (Top 4) but due to manufacturing consideration, Top 1 has to be considered as a competitive topology.
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