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Abstract
The ongoing miniaturization trend of electric machines increases the demand for higher rotational speeds to provide

a required power level at decreased size. The goal of this project is to push the limits of rotor miniaturization by

researching new concepts for ultra-high speed machines achieving rotational speeds above 20 million rotations

per minute (Mrpm). Such high rotational speeds can only be attained by limiting the centrifugal loading on the

rotor, which can be accomplished by decreasing its size to less than 1 mm in diameter. Furthermore, the rotational

losses have to be minimized. This requires precise and fast frictionless magnetic bearings for stabilization of the

rotor in all dimensions, which interfere with the drive system of the motor by generating a breaking torque and

torque ripples. The interaction is studied in this paper based on an analytical model and transient finite element

method (FEM) simulations. The occurring torque components are identified and guidelines for the design of the

radial magnetic bearing are provided. By incorporating these guidelines into the machine design, acceleration of

the rotor to the desired rotational speeds can be achieved.
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1. Introduction

The ongoing miniaturization trend of electric machines has led to increased rotational speeds in order to achieve

high power densities. Small size drive systems with rotational speeds of up to 1 Mrpm have been developed in the past

(Zwyssig, Kolar, and Round 2009). The achievable rotational speeds are limited by losses, which are mostly due to

friction. Mechanical bearing friction can effectively be eliminated by using magnetic bearings. As air friction becomes

significant at very high rotational speeds, it needs to be reduced by accelerating the rotor inside a vacuum. With a setup

incorporating both aforementioned measures, rotational speeds exceeding 20 Mrpm have been achieved with a spherical

steel rotor as early as 1946 (Beams, Young, and Moore 1946), but could not be reproduced in more recent studies (Boletis

and Bleuler 2002, Boletis and Bleuler 2004). As the achievable rotational speed is ultimately limited by the tensile

strength of the rotor material, sub-millimeter size solid steel spheres are used as rotors. At such scales, further limits are

imposed by the controllability and precision of the employed magnetic bearing systems.

The goal of this project is to extend the limits of miniaturization with an ultra-high speed (UHS) motor reaching

rotational speeds beyond 20 Mrpm. Ultimately, it is targeted at demonstrating the highest possible rotational speed with

an electric motor. The conducted research helps to address existing challenges of conventional machines in regard to

power density, mechanical stress and the controllability of highly dynamic systems. Moreover, the applicability of precise

magnetic bearings for levitation and stabilization of rotors in the sub-millimeter range is demonstrated. The targeted

ultra-high rotational speeds can be employed in applications such as gyroscopes, centrifuges and drilling devices, as well

as in materials science research.

To achieve stable levitation of the rotor, the setup as shown in Fig. 1(a) is used, which implements an active magnetic

bearing (AMB) in axial (z) and radial (x and y) direction based on an optical measurement of the rotor position in all

dimensions. Due to the small geometries and space constraints around the rotor, a combined concept is used, in which

the radially-placed drive coils are also used as radial bearing coils. During acceleration experiments it was observed

that the radial AMB impairs the drive performance of the motor by having a decelerating effect. This paper presents a
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concise analysis of this effect based on an analytical solution of the underlying electromagnetic field problem and provides

guidelines for determining the admissible magnetic flux density magnitude ratios of the drive and bearing fields.

The remainder of this paper is organized as follows: Section 2 provides a brief description of the motor torque model

and Section 3 considers the torque components as originating from the drive and bearing systems. The obtained results

are verified through transient 3D FEM simulations in Section 4. Section 5 concludes the paper.

x

y

z

Axial bearing coil

Magnetically 

levitated rotor

Centering core

Drive and

bearing coil

Connection to 

vacuum system

Glass tube

PSD sensor (y)

IR light 

source

ωr

PSD sensor (x)

(a)

m
in

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1

1.05

1.1

1.15

1.2

Rotor

drive field only

drive and bearing fields

0.5

(b)

Fig. 1: Setup of the ultra-high speed motor with annotated components (a). Distribution of the

magnetic flux density magnitude along the radial x-axis as caused by a drive field only (B = Bd)

and a combined drive and bearing field (B = Bd + Bb), where Bb is generated by the coil in the

positive x direction and its magnitude was chosen as 0.5Bd in the example (b). The flux density

magnitude was normalized to its minimum value Bmin, which occurs in the center of the motor

for B = Bd and is shifted for B = Bd + Bb as shown. It can be seen that the simulation results

are in good agreement with the calculated field distribution. More details regarding the utilized

models are outlined in Section 4. A rotor of radius a = 0.5 mm including the relevant coordinate

directions has been added to the figure.

2. Motor torque model

In order to study the interaction of the drive and radial bearing of the ultra-high speed spinning ball motor, the

underlying mechanism of torque generation in the motor has to be known. Therefore, the corresponding model is briefly

presented in this section.

The electromagnetic field problem of a rotating sphere made from conductive and ferromagnetic material in a rotating

magnetic field with constant flux density magnitude has been solved in the work of Reichert, Nussbaumer, and Kolar 2012.

As the rotor is accelerated by the principle of a solid rotor induction machine, it is subject to tangential Lorentz forces,

which are generated due to the interaction of the eddy current density �J inside the rotor and the rotating external magnetic

flux density �B. The resulting torque is generally calculated by integrating over the volume of the spherical rotor as

�T =
2π∫

0

π∫

0

a∫

0

�r
(
�J × �B

)
r2 sin(θ) dr dθ dϕ, (1)

where a denotes the rotor radius and �r is the radius vector. This torque can alternatively be calculated via the magnetic

dipole moment �m of the sphere as caused by the magnitude B of the external magnetic flux density. The magnetic dipole

moment �m of a sphere is related to the magnetic vector potential �A by

�A =
μ0

4π

�m × �r
r3
, (2)

see Jackson 1999. The magnetic vector potential �A has been obtained by Reichert, Nussbaumer, and Kolar 2012 and is
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used for the further considerations. By rearranging, �m can be obtained as

�m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
mx

my
mz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≈
2π

μ0

a3 B√
2 +

p√
ωs
+
√
ωs

p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√
2
+

3p√
ωs

3√
2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�ex

�ey
�ez

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with p =
1

a

�
μr

μ0σ
, (3)

where μr, σ, and ωs denote the relative permeability of the rotor material, its conductivity, and the angular slip frequency,

respectively. The latter is calculated as ωs = ωf − ωr, where ωf is the angular frequency of the rotating magnetic field

and ωr is the angular frequency of the mechanical rotation of the sphere. The approximation in Eq. (3) results from a

simplification of the magnetic vector potential �A, which has to be made in order to provide an analytic expression that

allows to directly assess the dependency of the result on material parameters, rotor size, and operating conditions. The

approximation yields sufficiently accurate results over a wide range of typical operating conditions and has implicitly also

been used in Reichert, Nussbaumer, and Kolar 2012. By using the magnetic moment, the motor torque is obtained more

explicitly than in Eq. (1) as

�T = �m × �B = −Bmy�ez. (4)

3. Torque interaction of the drive and radial magnetic bearing

Based on the outlined model, it is now possible to study the interaction of the drive and radial AMB in the motor. The

distribution of the magnetic flux density magnitude as present in the motor for a pure drive field as well as a combined drive

and bearing field is shown in Fig. 1(b). The relevant vectors of the magnetic moments and flux densities are qualitatively

shown in Fig. 2(a).
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Fig. 2: Flux density components and magnetic dipole moments as generated by the drive system

and radial magnetic bearing in a rotor-oriented (rotating) coordinate system (a). Magnitude of the

magnetic flux density at the center of the rotor for different displacements r0 of the rotor from

its equilibrium position at the center of the motor in a stator-oriented coordinate system (b). The

shown values have been normalized to Bd = Bmin, which occurs if the rotor is not displaced. The

displayed circular shapes correspond to the trace as inscribed by the tip of the rotating flux density

vector �Bd.

The magnetic flux density as generated by the drive is denoted by �Bd and causes the magnetic moment �md. Both

vectors rotate counterclockwise with an angular frequency of ωf = ωd in a stator-oriented coordinate system and are

rotated by the slip angle sd with respect to one another. The latter can be calculated based on Eq. (3) as

sd = arctan

� |md,y|
|md,x|

�
= arctan

⎛⎜⎜⎜⎜⎜⎝
√
ωs√

ωs +
√

2p

⎞⎟⎟⎟⎟⎟⎠ . (5)

As the rotor starts spinning with angular mechanical frequency ωr, the rotational frequency of the two aforementioned

vectors with respect to the rotor, which is relevant for the generation of the drive torque, is decreased to ωs = ωd − ωr,

which will affect sd as outlined in Eq. (5).
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Additionally, the magnetic flux density �Bb, as generated by the radial AMB, is stationary in a stator-oriented coor-

dinate system (ωf = 0), but rotates with ωr in clockwise direction relative to the rotor. It causes the magnetic moment

�mb, which is rotated by sb with respect to �Bb. In the depiction, �Bb has arbitrarily been chosen to point into the positive x
direction.

Based on the model of Section 2, the desired accelerating drive torque with non-zero average value can be calculated

as

�Td = −Bdmd,y�ez with ωs = ωd − ωr in Eq. (3). (6)

The undesired breaking torque �Tb, as generated by the radial AMB, can equivalently be calculated as

�Tb = Bbmb,y�ez with ωs = ωr in Eq. (3). (7)

It should be noted that the radial AMB is only used at times when the rotor deviates from its equilibrium position and

requires stabilization. As a consequence, Tb varies according to the bearing behavior. As long as |Tb| < |Td|, the bearing

will only decrease the rate of acceleration. However, as soon as |Tb| > |Td|, the bearing causes a deceleration. This most

likely occurs at high ratios of Bb/Bd and high values of ωr, at which the drive torque is decreased due to a decrease of ωs,

while the bearing torque is increased. Generally, the torque effect of the bearing is less significant if the bearing is required

less often or with limited values of Bb, which illustrates the necessity for providing as much passive radial stability as

possible in the motor by design. This is mainly achieved by the centering core, as displayed in Fig. 1(a), and its suitable

dimensioning.

Two other torque components, aside from the ones given in Eqs. (6) and (7), exist due to the interaction of the

magnetic dipole moment �md of the drive with the magnetic flux density �Bb of the bearing (�Tbd) and vice versa of �mb with
�Bd (�Tdb). As the two vectors within the respective pairs rotate with different frequencies, the resulting torque components

have zero average value and cause a pulsation of the torque with an angular frequency of ωd. The components can be

written as

�Tbd = �md × �Bb = Bb

[
md,x sin(ωdt) − md,y cos(ωdt)

]
�ez (8)

and

�Tdb = �mb × �Bd = Bd

[
mb,x sin(ωdt) − mb,y cos(ωdt)

]
�ez. (9)

Due to the respective slip angles, a phase shift of these torque components exists, which is accounted for in Eqs. (8) and (9)

by the componentwise consideration of �md and �mb, respectively. The overall torque is calculated as �T = �Td+ �Tbd+ �Tdb+ �Tb.

As B exhibits a gradient in the practical motor setup, as shown in Fig. 1(b), additional oscillating torque components

will be acting on the rotor in case of a displacement from its equilibrium position at the center between the drive coils. The

reason for this behavior is illustrated in Fig. 2(b), which shows that the magnitude of the magnetic flux density becomes

increasingly dependent on the angle of �Bd the more the rotor is displaced. The magnitude is high for angles at which
�Bd is directed towards one of the drive coils (located at 0◦, 90◦, 180◦, and 270◦), while it is low when �Bd points into a

direction between two coils. This results in a deviation from the ideal circular shape of the trace inscribed by the tip of the

flux density vector that can be observed if no displacement occurs (r0 = 0). While only the fundamental frequency ωd is

present for r0 = 0, a first harmonic component, oscillating with 2ωd, is present for r0 � 0, which results in a torque ripple

of frequency 2ωd as well. This ripple also is present, if the rotor is displaced in a pure drive field. Its magnitude depends

on the gradient of Bd in radial direction and is, therefore, determined by the setup of the stator. Besides this ripple, the

rotor will also experience a small increase in the average torque, as the average magnetic flux density is higher in case of

a displacement, due to the closer proximity of the rotor to the stator.

4. Verification through simulations

To verify the considerations as outlined above, transient 3D FEM simulations have been carried out using the motor

setup shown in Fig. 1(a) as a model. Additionally, calculations using an analytical model of the flux density distribution

in the motor have been carried out to validate the presented equations. In this model, the combined drive and bearing

coils are approximated by ten concentric current loops each, for which the distribution of the B-field can be calculated

analytically (e.g. Elliot 1993). A comparison of the magnitude distribution is displayed in Fig. 3, which shows a good

agreement of the values as obtained analytically (a) and by simulations (b).
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Fig. 3: Magnitude distribution of the magnetic flux density inside the motor as obtained by the

analytical model (a) and by FEM electromagnetic simulations (b). The two coils along the x-axis

have been used as an example and the instant at which the magnetic flux density vector �Bd points

in the positive x direction is depicted. It can be seen that the results as obtained analytically and

by simulations are in good agreement.

First, the sphere was placed in its equilibrium position (r0 = 0) and the torques, as caused by a pure drive field B = Bd

as well as a combined drive and radial bearing field B = Bd + Bb with Bb = 0.5Bd, have been analytically calculated and

simulated. The simulation parameters are listed in Table 1 and are identical to the conditions as shown in Fig. 1(b). The

results for both cases are shown in Fig. 4(a), where a constant torque can be observed for a pure drive field, as expected.

If a bearing field is added, the predicted oscillation of the torque around its equilibrium value with frequency ωd occurs.

This torque component originates from a combination of Tdb and Tbd.

Second, a sphere which was displaced by r0 = 1 mm from its equilibrium position has been considered in a pure

drive field. The obtained results are shown in Fig. 4(b), which exhibits the oscillating component of the torque with a

frequency of 2ωd as predicted by the model. Moreover, the small increase in the average torque is visible and marked

by ΔT . In all cases displayed in Fig. 4, a good agreement between analytically calculated and simulated results can be

observed, validating the mathematical considerations as outlined in Section 3.
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Fig. 4: Time-dependent torque characteristics as obtained for a centered rotor (r0 = 0) with the

simulation parameters as listed in Table 1. A pure drive field as well as combined drive and

bearing fields with Bb = 0.5Bd have been used (a). Time-dependent torque characteristics for

a rotor displaced by r0 = 1 mm from its equilibrium position in a pure drive field (b). In both

figures, the torque has been normalized to the constant value of Td.
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To provide guidelines for the relative dimensioning of the radial magnetic bearing with respect to the drive, the two

torque components with non-zero average value, namely Td and Tb, have been considered in more detail. Based on the

ratio Bb/Bd of the magnetic flux densities which cause these torques, it is possible to obtain the maximum achievable

rotational speed. The latter is attained when the overall torque T = 0, corresponding to |�Tb| = |�Td|. Based on Eqs. (6) and

(7), the ratio

� =
|�Tb|
|�Td|
=

Bbmb,y

Bdmd,y
=

(
Bb

Bd

)2
·

p√
ωd−ωr

+
√
ωd−ωr

p +
√

2

p√
ωr
+
√
ωr

p +
√

2
(10)

can be calculated, which has to be less than one for an acceleration of the rotor to be possible. By setting this ratio equal

to one and solving for ωr for a given ratio of Bb/Bd, the results as shown in Fig. 5 can be obtained. Different values of the

drive frequency fd = ωd/2π have been considered. It can be seen that only above Bb/Bd ≈ 0.5 a significant impact of Bb

is visible, causing a decrease of the achievable synchronous rotational speed. This decrease is less significant for higher

values of fd. Generally, it should be noted that even for Bb = 0, the synchronous rotational speed of nsyn is not attained in

the practical motor setup, since other loss components, such as air friction, cannot be eliminated entirely.

The presented analyses show that a combined usage of the drive system and the radial AMB is possible and that,

even for relatively high values of the bearing flux density, an accelerating torque can be obtained. The bearing has also

been identified as the cause of different ripple components. However, these ripples do not contribute to the average value

of the overall torque acting on the rotor.

Table 1: Simulation parameters

Rotor material 100Cr6
μr ≈ 4
σ 4.5 MS/m
a 0.5 mm
ωd 500 kHz
ωr 0

Bb/Bd
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Fig. 5: Attainable mechanical rotational speed as a fraction of the syn-

chronous speed ( fd) for varying ratios of the flux densities as gnerated

by the bearing and drive. The considerations have been carried out for

different values of fd.

5. Conclusion

A verified analytical model for the torque interaction of the drive and radial AMB in an ultra-high speed spinning

ball motor has been presented. Besides the identification of the occurring torque components, guidelines for assessing

the maximum achievable rotational speed, dependent on the required flux density magnitude of the bearing, have been

provided. The results facilitate the proper design of the radial AMB, which allows for stabilization of the rotor at rotational

speeds beyond 20 Mrpm.
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