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Abstract 
For rotors supported with active magnetic bearings (AMBs), the auxiliary bearing system (AUX) is needed to 
avoid potential severe internal damaging due to AMB loss power or overload.  The evolution of auxiliary 
systems has been required by the American Petroleum Institute (API) using analytical or experimental 
methods.  In part I of this paper, a detailed rotor drop transient analysis method including flexible shaft, 
rolling element bearing components, as well as flexible/damped supporting structures is given.  Part 2 gives 
the experimental validation of the method with a test rig and model optimization.  A finite element based 
flexible rotor model is used to indicate the shaft motion before the drop (operating conditions) and during the 
rotor drop event.  Un-lubricated Hertzian contact models are used for the shaft and inner races, for balls and 
races.  To avoid heavy time consumption, two different methods, which calculate the ball bearing contact 
loads, are discussed and the simulation results are compared.  These models are applied to predict 
shaft-race-ball displacements and angular speeds, contact loads and ball bearing stresses during the drop for 
auxiliary bearings.  This method also can be used to design and optimize the auxiliary bearing system as 
presented in the 2nd part of this paper, based upon the experimental testing results and validation. 

Keywords : Rotor Drop, AMB, Auxiliary Bearing, Rotordynamics; Nonlinear Transient Analysis  

 
1. Introduction 

 
Compared to conventional mechanical bearings, AMBs have many advantages: supporting the high-speed rotor 

without any contact, mechanical friction or lubrication, controlling the rotor position and vibration levels through 
feedback.  The properly designed auxiliary bearing system (AUX) or backup bearing system, however, is necessary to 
protect the critical machine components from direct contact with the rotor in event of loss of AMB power or overload 
(Schweitzer, G. and Maslen, E., 2009).  Rolling element bearings are the most common solution for AUX due to low 
friction, load capability in both radial and thrust, and minimum volume.  Rotor drop happens when the rotor suddenly 
loses suspension during operation and a very detailed evaluation of auxiliary bearing system is needed.  The 
understanding and mathematical modeling of auxiliary bearings has been made a priority by the API using analytical or 
experimental methods (API 617 8Ed).  Some previous testing of auxiliary bearings for AMB has been described 
(Hawkins etl, 2006, Ransom etl, 2009, and Rensburg, 2014).  The main difference between conventional bearing and 
AUXs is that AUXs are consumable protective devices and must be replaced after a number of drops when damage 
occurs in the rolling element bearings.  However, the analysis methods for handling the drop problem are nonlinear 
and that results in heavy computer modeling time consumption. 

To more accurately describe rotor behavior, a full nonlinear time transient analysis of the flexible rotor with 
auxiliary system is approached in this paper, based on Cao, 2015, in which the rotor is supported with fluid bearing and 
squeeze film dampers.  Typically, rolling element steady state analyses are based on constant bearing rotational speed 
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and fixed external applied load, and Hertzian contact stiffness and damping coefficients between raceway and ball, 
angular contact angle, and ball behaviors are then calculated (Noel etl. 2013). 

 
2. Rotor Drop Model 

 
The free body diagram for the horizontal rotor drop analysis is shown in Fig. 1.  The model can be used for a 

vertical rotor by changing gravitational direction from vertical to horizontal direction.  In the figure, M1~M3 are shaft 
modal mass/inertia matrices; Km and Cm are the AMB equivalent stiffness and damping prior to the drop; Kpm is 
negative permanent magnet stiffness, if it is present; Ka and Ca are the AUX stiffness and damping, which are 
calculated at each time step with the format of AUX forces; and Ks and Cs are flexible support or backup bumper (BB) 
located outside of the outer races if they exist. 

 

 
Fig. 1 Generic rotor drop analysis model - before (upper) and after (lower) drop 

 
3. Equation of Motion 

 
To calculate the lateral and torsional motion of rotor, a beam finite element with 12 degrees of freedom (DOF) is 

applied to model the linear shaft of the complex rotor system based on the finite element (FE) method with a fixed 
(non-rotating) frame as given by Cao, 2015.  Here, x and y are the lateral coordinates and z is the axial coordinate.  
For a horizontal rotor, gravitational direction is negative y; and for a vertical rotor, it is positive z. 

The shaft is assumed to be axially symmetric and modeled with Timoshenko beam elements.  The built on 
components are modeled as lumped masses plus their associated polar and transverse mass moments of inertia.  
Additional rigid body models with 6 DOF for inner race and outer race are added for AUXs to simulate the race 
responses.  AUXs are treated as nonlinear components where stiffness & damping effects are described by the bearing 
force equations and updated at each time step.  Any other rotational speed and/or shaft nodal displacements/velocities, 
dependent external forces/torques, are also treated as nonlinear forces and have to be updated at each time step. 

Two different motion equations, 1) before drop event (with AMB support, constant shaft rotational speed) and 2) 
after drop event (without AMB support, variable shaft rotational speed due to contact and friction), are first described.  
The system equations of motion before the drop event in generalized matrix form is: 

emgu TtuuFFtFKuuGCuM +++Ω=+Ω++ ),,(),()(       (1) 

And the system equations of motion after the drop event is: 
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where M, C, G, and K are the mass matrix of shaft and bearings, shaft damping matrix, shaft gyroscope matrix, and 
shaft stiffness matrix respectively; Fu, Fg, Fm, Te, Fc, Fb, and Fs are the vectors of unbalance force, gravitational force 
due to rotor weight, AMB force, external torque, contact force, AUX force and flexible support force respectively.  
The relationship between nodal axial angle and rotational speed is ...3,2,1; =Ω= jjzjθ , which makes Eq. 2 a 
nonlinear equation of motion. 

 
4. Shaft - Inner Race Contact Model 

 
During the rotor drop event, there is possible radial contact between the shaft outside surface (or landing sleeve) 

and AUX inner race, and/or axial contact between the shaft touchdown shoulder and side surface of the inner race.  
Both types of contacts are considered in the analysis.  Un-lubricated Hertzian line contact models and face contact 
models are applied to radial and axial contact separately with consideration of hard contact surfaces (Harris, 2007).  
The cross section of the radial contact model is shown in Fig. 2. 

 

   
Fig. 2 Shaft - Inner race radial and axial contact model 

 
The angle of the contact line of shaft and inner race is: 

( ) ( )isis xxyyXY −−== −− 11 tantanψ        (3) 

where the subscripts s and i represent the shaft and the inner race.  The nonlinear radial normal contact force relation is: 

0910 >+= rrcrrcrnr CKF δδδ         (4) 

where δr is the shaft/race deflection, which is given by: 

( )ir RRYX −−+= 0
22δ         (5) 

Here X and Y are the shaft center location; R0 and Ri are the radius of inner race and shaft.  The Hertzian contact stiffness 
Kcr depends on the material properties and geometry of the rotor and inner race.  For a given normal force, the deflection 
δ equation can be derived either by iterative method or by an analytical equation.  An equation, for which an iterative 
computation is not necessary, is used here for given normal contact force Q ( Palmgren, 1959): 
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where E1, ν1, E2, ν2 are Young's modulus and Poisson's ratio for two contact bodies, and l is the contact length. 
The contact damping between surfaces is not linear and related to the deformation and material contact surfaces.  

The form used for the force equation, including both the Hertzian force and the damping force (Hunt etl. 1975) is: 

( ) ( )δηδδδηδ  5.115.1 n
c

n
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n
c KKKQ +=+=       (7) 

Then the line contact damping coefficient Ccr can be expressed as: 
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where Kc=Kcr, n=10/9 for line contact, η is a value between 0.08 and 0.32 sec/m for steel or bronze.  During the rotor 
drop event, large contact forces may occur, then large contact damping coefficients may be calculated through Eq. 10.  
However, the contact damping between two dry hard surfaces is small, so a limit of maximum contact damping is used 
in Eq. 10.  In this paper, the maximum contact damping value is set to 500 N-sec/m for medium sized AUX bearings 
common in AMB systems. 

The radial friction force and torque relations due to radial line contact are: 
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where Mcs and Mci are the friction torques applied to the shaft and to the inner race, μr is the friction coefficient depends 
on the velocities of the two bodies at the contacting line: 

For axial surface contact situations, as shown in Fig. 2, the axial normal force Fcz has the format of the following 
equation: 
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where δcz is the axial contact deflection between the shaft and inner race, r2 is the landing face radius, and r1 is the bore 
radius.  The axial contact damping is calculated via a similar equation for in the radial direction (Eq. 10), but Kc=Kcz 
and n=1 is used in Eq. 10.  The torque due to the axial contact is obtained as: 
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where μa is the friction coefficient; it has a similar definition to that in the radial direction.  For surface contact 
situations, however, the rotational speed of the two bodies, not velocities of the contact points, are compared to evaluate 
the friction coefficients. 

 
5. Auxiliary Bearing Model 

 
In rotor drop simulations, the accurate prediction of ball bearing behavior is critical because the bearing behavior is 

significantly influenced by geometric relations, material properties, axial preload, inner race speed, and dynamic applied 
loads.  In this paper, ball bearings without lubricant, as commonly used in AMB applications, are considered. 

Steady state ball bearing models based on fixed external load under constant rotational speed have been presented by 
Noel elt, 2013.  An iteration method is used to find ball equivalent position and then to obtain bearing stiffness under the 
given external load.  For rotor drop analysis, the applied load due to contact depends upon interaction of shaft and the 
AUX bearing.  Another issue for a time transient drop analysis is the heavy computer time consumption.  However, 
most of those steady state theories and equations can be used in the nonlinear rotor drop model when suitable dynamic 
properties are included. 

Assuming that the outer race geometric center is fitted at a fixed frame of reference (XYZ), the front view and cross 
section of an angular ball bearing is shown in Fig. 3.  In the figure, only one example ball is shown.  If the flexible 
support is installed onto the outer race, the relative displacements and velocities of the inner race and the balls to the outer 
race will be used.  The position of the ball center and raceway groove curvature centers at normal angular position with 
and without applied load are shown in Fig. 4.  All bearing balls subject to compressive normal forces contribute to 
forces acting on the inner race and outer race. 

For a ball bearing without lubricant (dry or lubricant free bearing), the ball bearing contact forces applied onto the 
inner race and the outer race are: 
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where Zb is total number of balls in the bearing, Mzi and Mzo are friction torques about the bearing center due to the 
applied force, μb is the ball bearing friction coefficient, Rij and Roj are the radial distances of the bearing center to jth ball 
contact points. 
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Fig. 3 Bearing Geometry and Coordinates  Fig. 4 Ball and Raceway Groove Curvature Centers 

 
Finding the contact angle for each ball on the inner race and outer race using an iteration method at each time step 

takes more than 90% of calculation time in the simulation ( see Table 1).  The existence of the AUX air gap in both 
radial and axial directions makes the AUXs initially have zero or a very low rotating speed due to aerodynamic effects. 
The maximum bearing stress generally occurs during the first several touchdowns and at the same time the AUXs are 
angularly accelerated.  Unless there is poor AUX design, the shaft-race contact force decreases very fast after first 
several touchdowns.  The ball centrifugal forces and gyroscopic moments by themselves normally won't damage the 
bearing.  If those forces and moments are neglected, the contact angles on inner and outer races for each ball are the 
same.  The contact angle of each ball can be calculated directly based on the relative displacement and velocity of 
inner race and outer race and no iteration method is needed.  The ball location and angular velocity, if needed, can be 
obtained directly at each time step. 

Neglecting the ball centrifugal forces and gyroscopic moments, the direct method uses the following equations: 
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where 2dP=∆  for bearing without axial preload; 0=∆  for bearing with axial preload; boi Drrl −+=0 . 

The normal compressive force on the jth ball considering damping effect is: 

023 >+=== nnnnnoin ckQQQ δδδ         (16) 

where kn is equivalent stiffness of the ball-raceway: 
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and cn is damping coefficient with the expression: 
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where η is a value between 0.08 and 0.32 sec/m.  The total forces applying to the inner and outer races are similar to 
Eq. 16&17, but use Mg=0.  Since the contact angles on the inner race and outer race are same, there is no slippage 
friction torque or Msi=Mso=0. 
 

 
Figure 5 Compressor rotor orbits at left bearing and at right bearing 

 

  
 Figure 6 Compressor ball bearing contact forces and maximum bearing stresses at left bearing during rotor drop 
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Fig. 7 Average contact angle at left bearing 

 

 
 
 

Table 1 Computing Time Comparison 
8-Stage Compressor, Period of 0.1sec., Δt=4×10-6 s 
Iteration Method 5950 sec 
Direct Method 330 sec 

 
 
 
 
 
 

The analysis results based on the two methods are compared first.  A typical horizontal 8-stage centrifugal 
compressor radial drop analysis (the two radial AMBs and thrust AMB lose power at 0.1sec) is approached using two 
different methods.  The detailed rotor description and model is given in Part II of the paper.  Here only the analysis 
results using different methods are given for comparison purposes.  As shown from the analysis results, the shaft orbits 
(Figs. 8), the contact force and the maximum bearing stress (Fig. 6) are reasonably close for both methods; the average 
contact angles of all the balls, however, are somewhat different, as shown in Fig. 7.  With the radial contact loads and 
considering the bearing ball centrifugal forces, the contact angle on the outer race is less than that on inner race, as shown 
in Fig. 7.  Table 1 gives the time consumption for the two methods.  The direct method is 18 times faster than the 
iteration method.  In the following rotor drop examples in this paper, only the direct method is used to save computing 
time.  In this paper, the contact between balls or ball and cage (if they exist) has not been considered as the most 
commonly used AUX bearings used are cageless. 

 
6. Axial Preloading And Initial Condition 

 
A typical plot of bearing deflection vs. load is shown in Fig. 8.  For duplex pairs of angular contact bearings, the 

total axial/thrust load is the difference of two bearings and the radial load is the sum of two bearings: 
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where δp is the axial deformation due to preload, δa is the axial deformation of the bearing due to external forces. 

  
Fig. 8 Preloaded double row ball bearing  Fig. 9 Flow chart of rotor drop analysis 
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Figure 9 is a flowchart illustrating the calculation of the transient analysis.  The following steps are used in the 
rotor drop analysis.  First, we obtain the initial shaft nodal positions and velocities by solving motion equation before 
the rotor drop.  Then the initial conditions of auxiliary bearing system are calculated based on the axial preload.  We 
reassemble the mass, stiffness and damping matrices by choosing the AMB without electrical power, adding the 
auxiliary bearing and flexible support/damper if they exist.  The transient analysis starts from the initial position of the 
rotor, the auxiliary bearings and the support system with the initial rotational speed, and then the bearing/support 
system forces and the external torques are calculated at the initial position.  The new shaft position and velocity values 
are calculated, which are then used to update the bearing/support forces and the running speed at each time step.  The 
last step is to save and to post-process the saved data.  For time transient analysis, very large output files may 
generated. 

 
6. Conclusions 

 
This paper presents the detailed formulation of a nonlinear transient analysis for rotor drop event including the 

flexible shaft, the rolling element bearing components considering inner/outer races, balls, and flexible/damped 
supporting structures.  Initial conditions are obtained through solving a linear rotor/AMB motion equation.  A finite 
element based 6-DOF flexible rotor model is used to indicate shaft motion operating conditions before and after a rotor 
drop event.  Un-lubricated Hertzian contact models are used for contacting between the shaft and the inner race, 
between the balls and the raceways.  The time transient analyses are approached using the 4th order Runge-Kutta 
method. 

Two different approach methods in ball bearing contact model are discussed and the simulation results are 
compared. Two methods has similar response including shaft orbits, contact loads and maximum bearing stress except 
angular contact angles. The simulation results indicate that iteration method is much slower than direct method (same 
contact angles at each ball, but different balls have different contact angles), and the heavy time consumption makes the 
iteration method has difficulty in industrial applications but can be used if necessary.  Part 2 of this paper concerns the 
experimental validation of this approach and optimization of the rotor drop model parameters. 
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