
ISMB15

Inertial Centering of Magnetically Suspended Flexible Rotors
Rami LEVY∗ and Shai AROGETI∗

∗ Dept. of mechanical Engineering, Ben-Gurion University of the Negev
P.O.B. 653, Beer-Sheva, 8410501, Israel

E-mail: levyram@post.bgu.ac.il, arogeti@bgu.ac.il

Abstract
When an unbalanced flexible rotor reaches a steady state, where it is not vibrating but spinning with a constant
geometric shape, it can be assumed (to some extent) a rigid body. Under this assumption, an inertial centering
controller is developed for a general flexible AMB-rotor system with multiple mass imbalances. It is shown
that in the absence of gyroscopic effects, the inertial center of a discretized flexible rotor can be observed as
an independent set of coordinates with static and dynamic imbalance. However, more information is needed to
implement an imbalance compensation in the presence of gyroscopic effects. In addition, the stability of the closed
loop system is discussed and a case study of 8-DoF flexible rotor is presented. The theory is approved by numerical
simulations which result in a complete suppression of more than 420N synchronous force.
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1. Introduction

Many high speed rotating systems are supported by Active Magnetic Bearings (AMBs) which allow contact-less
operation. Compared to other bearing types, the main advantages of AMBs are due to, their operation with no friction,
the little required maintenance compared to standard bearings, and their suitability to vacuum conditions. In addition, the
air gap between static and dynamic parts in the AMB can be actively controlled, which allows the rotor to whirl without
physical constraint. This feature is important for applications that require minimum vibrations and minimum forces acting
on the rotor supports (and hence, minimum control efforts applied by the AMBs). To achieve these operation conditions,
the rotor has to be spinning in the direction of its inertial center and hence this approach is referred to as inertial centering.
On the contrary, in the geometric centering control approach, the goal is to achieve a precise position of the rotor axis,
that is typically coincides with the geometric center of the bearings. In either cases, mass imbalance plays an important
role as a source of disturbance, and this problem is conventionally solved by offline mechanical balancing.

Using the active nature of AMBs, it is possible to implement imbalance compensation for inertial or geometric
centering, in real time. Examples have been presented by Lum et al. (1996) and Lum et al. (1998), where inertial and
geometric centering were implemented (respectively). These approached included an adaptive imbalance compensation
framework that is based on direct estimation of mass imbalance coefficients. A geometric centering control, with an
integrated least mean square algorithm for imbalance compensation is given by Xiang and Wei (2014). An inertial
centering control with a generalized notch filter for imbalance compensation and an adaptively tuning loop for control
currents adjustment is given by Zheng and Feng (2015). These examples, are all for rigid rotors and are implemented
in a decentralized scheme. Hence, they do not properly consider the dynamic mass imbalance, which excites gyroscopic
moments.

The gyroscopic coupling problem can be solved indirectly by means of advanced robust control methods such as H∞
and H2, see for example Fang et al. (2013). The challenge with these methods is to find the required accurate AMB-rotor
system model and to formulate the uncertainty and disturbance such that the least conservative controller is achieved.
Advanced robust control theory is also the main approach used for flexible rotor systems, which are in general more
complex due to their higher dimensionality (e.g., Becker et al (2015), Schittenhelmet et al (2015), Tang et al (2015a),
Riemann et al (2013), Sahinkaya et al (2011)). Some works have utilized simplified models to describe the flexible
rotor dynamics; models that may facilitate the controller design process. For example, Yuan et al (2013) have modeled the
flexible rotor as a rigid shaft and a rigid disk that are interconnected by couples of springs and dampers. Tang et al (2015b)
have formulated a simplified model for control, at specific bending critical speeds by modal separation techniques.
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In general, the rotor is considered inertially centered if it is spinning in the direction of its principal axis of inertia
and through its center of mass. It is clear that, if a rigid rotor is inertially centered, it applies zero radial forces and zero
gyroscopic moments on its supports. As to a flexible rotor, some conditions have to be met, before it reaches a steady state
where it is spinning with a consistent geometric shape (i.e. a bent rotor) and can be regarded as rigid. This concept was
first suggested by Levy and Arogeti (2014), where an inertial centering approach for flexible rotor systems was introduced
and a controller was developed for an eight degrees of freedom (DoFs) flexible rotor system, subjected to a single mass
imbalance. Here, the method is extended to a general rotor model with multiple mass imbalances and the stability of the
closed loop system is further discussed.

2. Methodology

When a flexible rotor is spinning with a constant geometric shape, it can be regarded as a rigid rotor. Indeed, if a
radially symmetric flexible rotor system is subjected to a synchronous excitation, then the orbit of the rotor center-line at
each cross-section is circular with a frequency ω, that is equal to the frequency of the spin-speed, Ω (i.e. synchronous
circular whirl). Hence, the mass elements of the rotor do not carry relative motion since they all orbit in a circular motion
of constant radius and frequency. Then, the mass center and the principal axis of the flexible rotor can be calculated based
on a rigid body analysis.

2.1. Inertial Center of a Flexible Rotor
The inertial center of a bent rotor is developed based on a lumped mass approach, where a finite set of rigid bodies,

i.e., rigid rotors, are lumped by massless elastic fields. The rigid rotors are assumed to be radially symmetric disks or
cylinders. Each rotor mass, mi, is free to translate and rotate in two mutually perpendicular directions and hence the DoFs
of each mass element are xi, yi, θxi, θyi. The location of each mass along the axial direction is given by zi. Followed by
the assumption that the translations and rotations are sufficiently small, the inertial center of the complete rotor system is
defined as the coordinates of the center of mass and principal angles, as follows (Levy and Arogeti, 2014),

Mtot xc =
∑

i (mixi) , Itotθxc =
∑

i

((
Iti − Ipi

)
θxi − miyizi

)

Mtotyc =
∑

i (miyi) , Itotθyc =
∑

i

((
Iti − Ipi

)
θyi + mixizii

) (1)

where Ipi, Iti are polar and transverse moments of inertia and Mtot,Itot are the total mass and transverse moment of inertia
of the complete rotor, given by ∑i mi and ∑i

(
Iti + miz2

i

)
respectively.

It is assumed here that each rigid rotor carries a static imbalance, expressed by mass center deflection and dynamic
imbalance, expressed by inertial axis inclination. In the following, upper-case letters indicate geometric center coordinates
and angles (X, Y,Θx,Θy) and lower-case letters indicate mass center coordinates and inertial center angle (x, y, θx, θy). The
following identities are utilized here in order to describe the relations between geometric centers and inertial centers of
each mass element,

xi = Xi + ξicosΩt − ζisinΩt , θxi = Θxi + µicosΩt − ηisinΩt
yi = Yi + ξisinΩt + ζicosΩt , θyi = Θyi + µisinΩt + ηicosΩt

(2)

where ξi, ζi are eccentricity components of static mass imbalance and µi, ηi are inclination components of dynamic
mass imbalance, relative to a fixed reference frame of each mass element i. Substituting Eq. (2) into (1) gives,

xc = Xc + ξ̄cosΩt − ζ̄sinΩt , θxc = Θxc + µ̄cosΩt − η̄sinΩt
yc = Yc + ξ̄sinΩt + ζ̄cosΩt , θyc = Θyc + µ̄sinΩt + η̄cosΩt

(3)

where ξ̄, ζ̄, µ̄, η̄ are eccentricity and inclination components of the complete rotor system and are given by,

Xc =
∑

i (miXi) /Mtot ξ̄ =
∑

i (miξi) /Mtot

Yc =
∑

i (miYi) /Mtot ζ̄ =
∑

i (miζi) /Mtot

Θxc =
∑

i

((
Iti − Ipi

)
Θxi − miYizi

)
/Itot µ̄ =

∑
i

((
Iti − Ipi

)
µi − miζizi

)
/Itot

Θyc =
∑

i

((
Iti − Ipi

)
Θyi + miXizi

)
/Itot η̄ =

∑
i

((
Iti − Ipi

)
ηi + miξizi

)
/Itot

(4)

It is easy to recognize the similarity between Eq. (1) and (3). In both cases, the transformation from inertial centers
to geometric centers and vice-versa requires identical rotation transformation of different eccentricity and inclination
components. Hence. the inertial centers of the complete rotor can be observed as an independent set of coordinates with
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static and dynamic imbalance. This may be interpreted incorrectly with a conclusion that knowledge of these parameters
is sufficient for implementation of inertial centering control algorithms. In fact, it will be shown here that in the presence
of gyroscopic effects, more information is needed for inertial centering.

2.2. Controller Derivation
Let qc ∈ Rn and qg ∈ Rn be vectors of generalized coordinates of the inertial centers and geometric centers of each

rotor element, respectively. Then it is possible to define a periodic matrix Qcg (t) ∈ Rn×r and a vector uub ∈ Rr of the
imbalance magnitudes such that,

qc = qg + Qcg (t) uub (5)

Note that Qcg (t) is block diagonal of 2D rotation matrices, R (Ωt). This can be recognized from the relations
between geometric centers and inertial centers of each mass element in Eq. (2), which can be formulated by (5)
with the following definitions, qc �

[
x y θx θy

]T
, qg �

[
X Y Θx Θy

]T
, uub �

[
ξ ζ µ η

]T
and

Qcg (Ωt) � diag
(

R (Ωt) , R (Ωt)
)

where,

R (Ωt) =
 cosΩt −sinΩt

sinΩt cosΩt

 (6)

In a flexible rotor system, mass accelerations and gyroscopic forces are taken with respect to the coordinates of
inertial centers while damping and elastic stiffness forces are taken with respect to the coordinates of geometric centers.
Hence, the general set of differential eqnarrays of motion (EoM) for a discrete model of a free-free balanced rotor is given
in the following general matrix form,

Mq̈c + ΩGq̇c + Dq̇g + Kqg = fex (t) (7)

where M ∈ Rn×n is a diagonal and positive definite mass matrix, D ∈ Rn×n is a symmetric matrix representing external
damping, G ∈ Rn×n is skew-symmetric and represents gyroscopic forces, K ∈ Rn×n is symmetric, positive semi-definite
stiffness matrix, fex (t) ∈ Rn is a vector of external forces and Ω ∈ R is the nominal spinning speed of the rotor, while n is
the number of system DoFs.

By substituting the imbalance relations from (5), the EoM (7) can be represented in one of the following general
forms,

Mq̈g + (D + ΩG) q̇g + Kqg = fex (t)+
(
MΩ2Qcg (t) −ΩGQ̇cg (t)

)
������������������������������������������������������������������

�Qg

uub (8)

Mq̈c + (D + ΩG) q̇c + Kqc = fex (t)+
(
DQ̇cg (t) + KQcg (t)

)
����������������������������������������������������

�Qc

uub (9)

where Qg ∈ Rn×r and Qc ∈ Rn×r are defined as imbalance matrices with respect to generalized geometric and mass center
coordinates respectively. Note that internal damping is not included in these eqnarrays. The effect of internal damping
will be explained in an extended paper.

Based on the definition of inertial center from (1), it is possible to define a linear transformation from the vector of
the generalized coordinates of the mass and inertial centers, qc ∈ Rn, to the vector of the inertial center of the complete
rotor, qc �

[
xic yic θxic θyic

]T
, as follows,

Micqic = TicMqc (10)

where Mic = diag (Mtot, Mtot, Itot, Itot), M is the usual stiffness matrix and Tic defines the transformation according to (1).
The goal of the control scheme is to find a control law that leads to,

q̈ic = −Kcpqic − Kcvq̇ic (11)

where Kcp = diag
(
kep, kep, kτp, kτp

)
, Kcv = diag (kev, kev, kτv, kτv) and kev, kep, kτv, kτp are positive control gains. Clearly,

this type of motion stabilizes the mass center and principal axis of the flexible rotor at the origin, asymptotically.
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Substituting (10) to (11) gives,

q̈ic = M−1
ic TicMq̈c = −KcpM−1

ic TicMqc − KcvM−1
ic TicMq̇c (12)

Since Mic, Kcp and Kcv are diagonal, multiplying the latter by Mic from the left leads to,

TicMq̈c = −KcpTicMqc − KcvTicMq̇c (13)

Substituting qc, q̇c, q̈c with qg, q̇g, q̈g gives,

TicMq̈g = −KcpTicMqg − KcvTicMq̇g +
((
Ω2I − Kcp

)
TicMQcg (t) − KcvTicMQ̇cg (t)

)
uub (14)

Then, substituting Mq̈g from (8) to the latter, results in the following control law,

Ticfex (t) =
(
TicK − KcpTicM

)
qg

+ (Tic (D + ΩG) − KcvTicM) q̇g (15)

+
(
−KcpTicMQcg (t) +

(
TicΩG − KcvTicMQ̇cg

)
(t)
)

uub

In the case of linearized AMB forces, fex takes the following form:

fex = −Khqg − BexKii (16)

where Kh ∈ Rn×n is a square-diagonal matrix with negative AMB stiffness constants, Ki ∈ Rq×q is a square-diagonal
matrix with AMB current constants, Bex ∈ Rn×q is the input matrix of AMB forces and q is the number of AMBs control
currents. Substituting the latter in Eq. 15 leads to,

i = Kfb1����
q×n

qg + Kfb2����
q×n

q̇g + Kff (Ωt)��������
q×r

uub (17)

where Kfb1,2 ∈ Rq×n are feedback gain matrices and Kff (Ωt) is a periodic time dependent feedforward gain matrix, given
by,

Kfb1 = (TicBexKi)−1
(
KcpTicM − Tic (K + Kh)

)

Kfb2 = (TicBexKi)−1 (KcvTicM − Tic (D + ΩG))
Kff (Ωt) = (TicBexKi)−1

(
KcpTicMQcg (Ωt) + (KcvTicM − TicΩG) Q̇cg (Ωt)

) (18)

The feedback gain matrices act on the geometric centers and their time derivatives, which are assumed to be measured
(in a state-feedback configuration). On the other hand, the feedforward controller requires the imbalance coefficients of
each rotor element (ξi, ζi, µi, ηi) which are assumed to be constant and are, in general, unknown. By considering the typical
structure of Tic, M, G, Qcg (Ωt) and Q̇cg (Ωt), it is easy to show that the feedforward controller is also given by,

Kff (Ωt) uub = (TicBexKi)−1
(
KcpQ (Ωt) Micūub + KcvQ̇ (Ωt) Micūub −Ω2Q (Ωt)ψub

)
(19)

where Q (Ωt) = diag (R (Ωt) , R (Ωt)) is block diagonal of 2D rotation matrices, ūub �
[
ξ̄ ζ̄ µ̄ η̄

]T
is a vector of the

imbalance parameters of the complete rotor and ψub =
[

0 0 ψµ ψη
]T

is a gyroscopic imbalance coefficients vector

where ψµ =
∑ Ipi

Iti

(
Iti − Ipi

)
µi and ψη =

∑ Ipi

Iti

(
Iti − Ipi

)
ηi. As expected, the feedforward control law requires the imbalance

coefficients ξ̄, ζ̄, µ̄, η̄ which express the mechanical imbalance of the complete rotor system as in Eq. (3). However,
additional two imbalance coefficients are needed for the imbalance compensation: ψµ and ψη. These coefficients are
aimed at compensating the gyroscopic moments and hence, are referred to here as, gyroscopic imbalance coefficients.

3. Damping and Stability Analysis

From 11, the control law stabilizes the inertial center of the complete rotor system at the geometric origin of the
system support. However, zero radial forces and gyroscopic moments are achieved only if the assumption of rigid-like
rotor is valid. This means that the rotor elements must not carry any relative movement with respect to each other.
Essentially, relative motion of the rotor elements is a result of rotor deformation vibrations and thus, inertial centering is
fully achieved only if the rotor is not vibrating.

A flexible system response, due to an abrupt excitation is a collection of periodic trajectories. In the context of rotor
systems, the response is a collection of periodic orbits with natural frequencies, and the frequency of the input excitation.
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The orbits with natural frequencies include bending vibrations due to stored elastic energy in the flexible rotor. This
energy must be dissipated during the transient response and this may be achieved in the presence of internal or external
damping forces. In the absence of a meaningful damping, intense enough to allow a short transient response, artificial
external damping can be applied in the control scheme.

Roughly speaking, from control theory point of view, if the energy of the system is completely dissipated around the
equilibrium, this means that the equilibrium is exponentially stable. It will be demonstrated here, that asymptotic stability
can be achieved by adding an external time-varying damping element to the inertial centering control law, as follows,

i = Kfb1qg + Kfb2q̇g + Kff (Ωt) uub����������������������������������������������������������������������
Inertial centering

+ kd (t) K−1
i Dq̇g��������������������������

Artificial damping
(20)

where kd (t) is a time-depended damping coefficient which is designed manually to dissipate stored energy of bending
vibrations. In (20), Ki is the AMB current gain matrix from (16) and D is the rotor damping matrix from (8) and (9). The
choice of this particular external damping mechanism is simply based on the natural damping physics of the rotor, without
the destabilizing circulatory forces, which may be caused by internal damping.

A state representation of the flexible rotor system 8 may be given by defining a state vector xT =
[

qg q̇g
]T

as
follows,

dx
dt
=

 0n×n In×n

−M−1 (K + Kh) −M−1 (D + ΩG)

 x +
 0n×r

M−1Qg (t)

 uub +

 0n×q

−M−1BexKi

 i (21)

Then, substituting the control currents from (17), results with the state space representation of the closed loop rotor system.
This would lead to the following general structure,

ẋ = �Ax + �B (t) uub (22)

where �A ∈ Rn×n is a constant square matrix and �B (t) ∈ Rn×r is a periodic input matrix.
Some general stability considerations are now explained. As seen in (11), the inertial center closed loop system is

exponentially stable. However, this does not imply that the closed loop rotor system given by (22) is also stable. As a
matter of fact, it will be shown in following sections that there are geometric and mechanical conditions for the rotor
in order to assure stability. As for the stable regions, where the eigenvalues of �A from (22) are all in the OLHP, it is
well known that if the system is exponentially stable, it is also BIBO stable. Then, since the input excitation �B (t) uub is
bounded, the state response is also bounded. So, as long as the air gap of the AMBs is large enough to allow the rotor to
orbit inside without contact, the system is stable.

4. Case Study and Numerical Results

An 8-DoF flexible rotor model supported by two AMBs is utilized for the numerical results which are presented in
the following figures. In this model, three concentrated masses (m1,m2,m3) are lumped by massless shaft-connections
with identical elastic characteristics. The dynamic bending of the shaft is in two mutually perpendicular lateral directions
(x and y) and the central mass (m2) has transverse and polar moments of inertia (It, Ip), meaning that it can rotate in x
and y directions (θx, θy) and excite gyroscopic effects. The AMBs are located at the end masses (m1,m3) and are modeled
as linearized AMBs with a negative stiffness. Fig. 1 shows an illustration of the AMB-rotor system (right) and a block
diagram of the control scheme (left). The artificial damping and inertial centering blocks in the diagram, implement (20).
The EoM of the 8-DoF AMB-rotor system are given as follows,

m1 ẍ1 = − k1

(
x1 − x2 + θyL1

)
+ m1Ω

2 (ξ1 cos (Ωt) − ζ1 sin (Ωt)) + FAMB,x1

m1ÿ1 = − k1 (y1 − y2 − θxL1) + m1Ω
2 (ξ1 sin (Ωt) + ζ1 cos (Ωt)) + FAMB,y1

m2 ẍ2 = − k1

(
x2 − x1 − θyL1

)
− k2

(
x2 − x3 + θyL2

)
+ m2Ω

2 (ξ2 cos (Ωt) − ζ2 sin (Ωt))

m2ÿ2 = − k1 (y2 − y1 + θxL1) − k2 (y2 − y3 − θxL2) + m2Ω
2 (ξ2 sin (Ωt) + ζ2 cos (Ωt)) (23)

Itθ̈x = − k1L1 (θxL1 + y2 − y1) − k2L2 (θxL2 + y3 − y2) − IpΩθ̇y +
(
It − Ip

)
Ω2 (µ cos (Ωt) − η sin (Ωt))

Itθ̈y = − k1L1

(
θyL1 + x1 − x2

)
− k2L2

(
θyL2 + x2 − x3

)
+ IpΩθ̇x +

(
It − Ip

)
Ω2 (µ sin (Ωt) + η cos (Ωt))

m3 ẍ3 = − k2

(
x3 − x2 − θyL2

)
+ m3Ω

2 (ξ3 cos (Ωt) − ζ3 sin (Ωt)) + FAMB,x3

m3ÿ3 = − k2 (y3 − y2 + θxL2) + m3Ω
2 (ξ3 sin (Ωt) + ζ3 cos ζ (Ωt)) + FAMB,y3
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Ip, It
Ω

θy

θx

E,I

8-DOF:

x1, y1, x2, y2,

θx, θy, x3, y3

Fig. 1 8-DOF model of a flexible rotor-AMB system (left) and a block diagram of the control scheme (right)

The model parameters were chosen such that the rotor is transversely symmetric, meaning that m1 = m3 � m and
k1 = k2 � ks. In this relatively simple case, it can be shown that without any damping mechanism, the controller can bring
the rotor to a marginal stability. The development of the conditions for marginal stability is based on analytic investigation
of closed loop pole location, and only the result is given here,

I. kep, kev, kτp, kτv > 0
II. 4Itks

(
It − Ip + 2L2m

)
+ I2

pmΩ2 > 0
III. 2L2m � Ip − It

(24)

The complete derivation of these conditions will be presented in an extended paper. Note that if these conditions do not
hold, the closed loop rotor system is unstable, despite the stability of the closed loop inertial center system. The values
of model parameters for the simulation where chosen such that the stability conditions are satisfied. As mentioned above,
exponential stability may be achieved by adding an external damping module to the control scheme. The location of the
poles as a function of kd, which indicate on the damping intensity, is presented in figure 2. It can be seen that the poles
location start at the imaginary axis and move to the OLHP as the intensity of the damping increases.

−100 −80 −60 −40 −20 0 20
−5000

0

5000
Closed−loop system poles for kd(t)=[0,8]

real

Im
ag

in
ar

y

with internal damping and kd(t)=0
kd(t)=8

Fig. 2 Pole location map of the closed loop system as a function of kd , the damping intensity. The system is
marginally stable for kd = 0 and the poles move to the OLHP as it increases.

The critical speed of the first bending mode is at 10.55krpm and the rotor is spinning at 15krpm. The imbalance
coefficient values are given in Table. 1, along with the corresponding force and moment amplitudes which are calculated
by mΩ2

√
ξ2 + ζ2 and

���It − Ip

���Ω2
√
µ2 + η2, respectively. Each mass carries different imbalance amplitude and phase,

resulting in more than 420N synchronous forces and 8.4Nm synchronous moments.

Table 1 Imbalance amplitudes. Each mass carries different imbalance amplitude and phase.
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The time response of the displacements at the AMB planes is presented in Fig. 3 and the AMB forces and artificial
damping intensity are presented in Fig. 4. The simulation starts with an abrupt imbalance excitation and during the first
0.3s time slot, the artificial damping intensity is zero. During this time (bottom of Fig. 3), the inertial centers are regulated,
but the elastic energy of the rotor is not dissipated and the rotor is vibrating, as illustrated in Fig. 5 (left). Since the rotor is
vibrating, the AMBs still apply a relatively large value of force, although the inertial centers have converged to zero. After
0.3s the artificial damping is set to a maximum level, and then, it is decreased monotonically back to zero after 4.5s. At
this point, the stored elastic energy is fully dissipated, the rotor is inertially-centered and the AMB forces are very close
to zero. Fig. 5 (right) shows the orbits of the mass elements of the rotor at this stage.
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Fig. 3 Displacements of the geometric centers at the AMB planes and the mass center of the complete rotor
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Fig. 4 AMB forces and time varying artificial damping intensity

5. Conclusions

An inertial centering control scheme for a general flexible AMB-rotor systems with multiple mass imbalances was
suggested in this paper. It was shown that in the absence of gyroscopic effects, the inertial center of the complete rotor
can be observed as an independent set of coordinates with static and dynamic imbalance. However, in the presence of
gyroscopic effects, more information is needed to implement an imbalance compensation controller. The stability of the
control scheme was discussed and a case study of 8-DoF rotor system was presented, along with a pole location analysis.
A numerical example, where each mass element of the rotor is subjected to mass imbalance with different amplitude and
phase, was presented. The results showed that a massively imbalanced flexible rotor can be inertially-centered by applying
a relatively small control forces, which eventually vanish in the steady state.
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Fig. 5 Orbits of the rotor’s elements during the transient response at the beginning of the simulation where the
rotor is vibrating (left). and during the steady state response where the rotor is inertially-centered and the
AMB forces are zero (right).
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