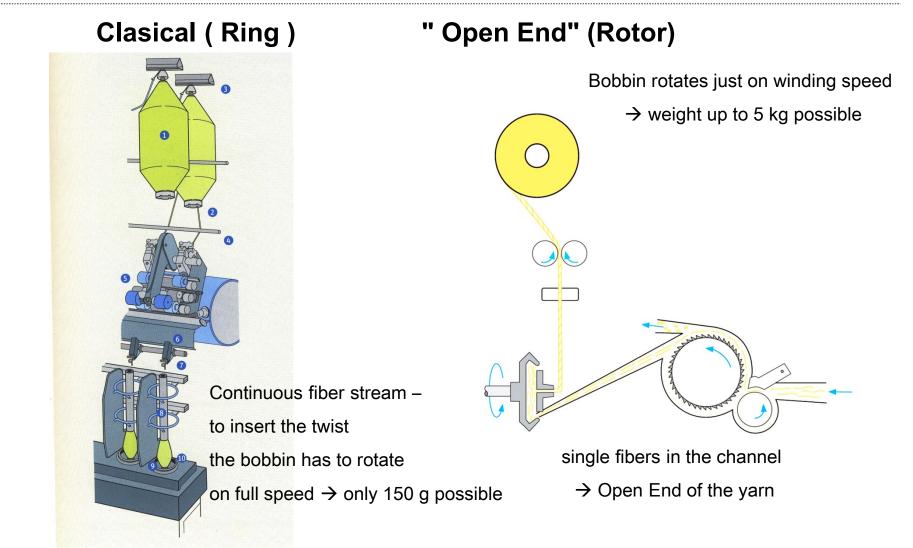


Magnetic Bearings: Application to High Speed Textile Processing ISMB14 Linz 2014

Jiří Sloupenský, Vicepresident Product Research Rieter

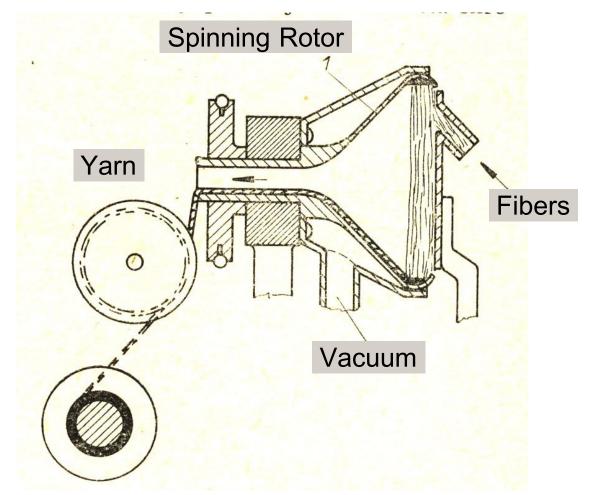
Spinning = yarn production



From hand made yarn ...

.

Today industrial solutions



Jiří Sloupenský Rieter SYS P-R 3

of

1937	Berthelsen developed first open end
1950	Meinberg in Germany makes trial with different Open End spinning systems
1965	Czechoslovak KS200 rotor spinning machine was introduced to public runnig at 30 000 rotor rpm.
1967	Improved BD200 was presented with first spinning mill of OE coming under production
1971-1975	Many machine manufacturers started with OE, improved versions of machines were launched with speed up to 100 000 rpm.
1975	Schlafhorst (DE) introduced fully automated Autocoro machine
1999	Rieter introduced "Semi automated machine" for low cost countries

Important : Yarn is taken out opposite to the fiber input

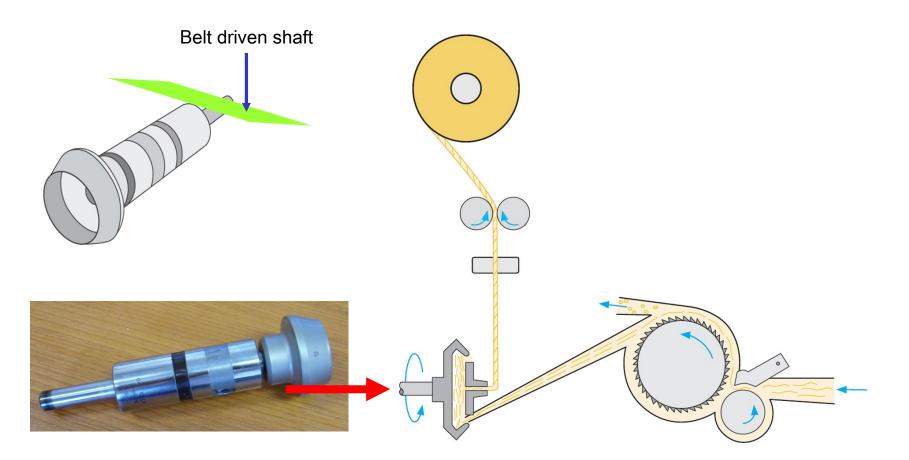
					•	•	•								 * 			•			2.00	•		•		*		
 iří S	loup	ensl	٧Ý,									÷	÷		 •	582			×			-		Rie	ter S	SYSI	P-R	5,

Industrialisation of OE spinning in Czechoslovakia

1965 – first industrial OE machine introduced to public: KS 200

Still yarn is taken out opposite to the fibber input !!

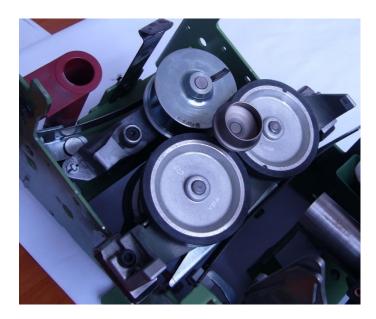
State of the art - fully automated Rotor machine



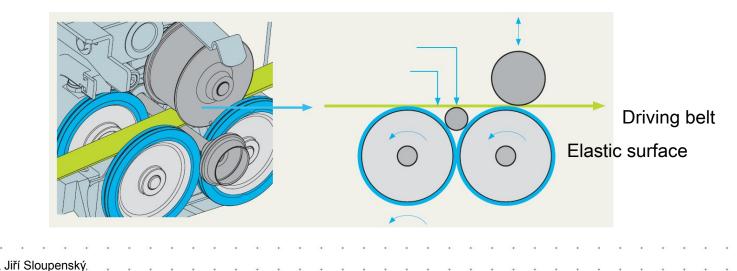
Productivity of Rotor spinning machine is given by the rotor speed
→ high requirements for drive and bearing , but high cost pressure

All historical units had a yarn take up to the opposite direction
than fiber input, but it was too complicated for drive and bearing
→ The new concept of Rotor spinning was developed in 60th
yarn take up to the same side as fiber input

Direct rotor drive – the most simple solution



Speed limit about 100 000 r.p.m.


* *					•	•	•	× .					•					•			•		•	•	•				(A)	
Jiří Slo	oupe	ensk	ý,										*			542			×			-	•		Riet	er S	YS F	P-R		9.

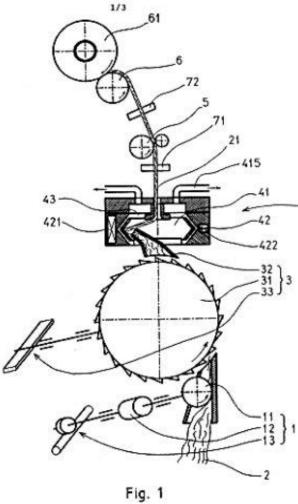
Indirect drive – speed multiplier

SIELES

- Speed up to 160 000 r.p.m possible, but high friction , high abrasion
- → part wearing and high energy consumption

- Reducing energy consumption
- \succ Reducing mechanical abrasion \rightarrow higher life time
- Possible higher rotor speed ??
- Recovering of the idea of opposite yarn take up

 \rightarrow different yarn properties ?

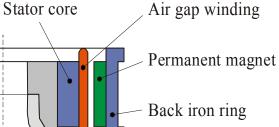

 \rightarrow less dust deposit ?

Utilization of newly available technologies and components

Project History

Jiří Sloupenský

SIELES


1999 – first patent applied
2000 .. 2004 – our own (home) experiments (not successful- only 30 000 r.p.m. reached)
2005 - collaboration with JKU/LCM starts
2006 - first running unit – 85 000 r.p.m.
2007 .. 2013 – many details solved, step by step development

2012 - 150 000 r.p.m. reached

Rieter SYS P-R 13,

nce should be avoided!

High-speed motor

Requirements

High efficiency

Jiří Sloupenský

Low destabilizing stiffness in radial direction.

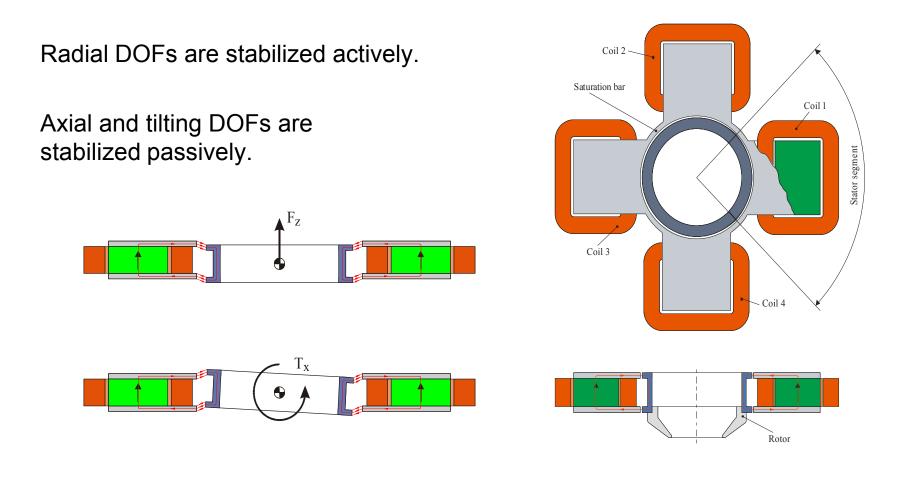
Short axial length to minimize air drag.

Mechanical protection of the permanent magnet to withstand high centrifugal forces (tensile strength of permanent magnet materials is limited to approx. 100MPa).

Back iron ring is part of the bearing too.→ Mutual influence should be avoided!

otor

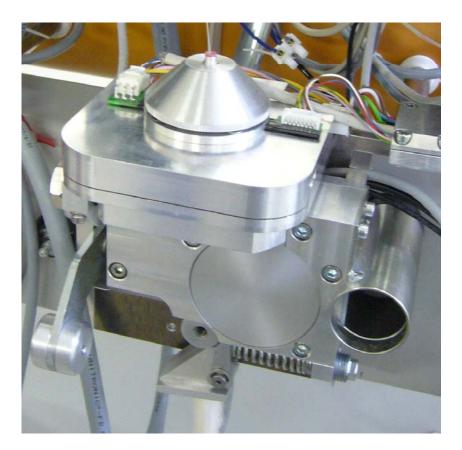
Stator


Reality

Spinning rotor

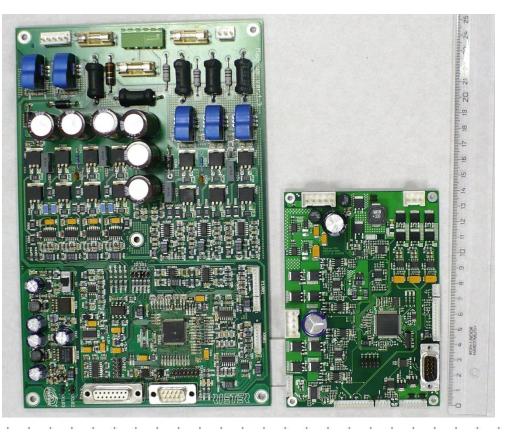
Magnetic bearing

Combination of active and passive magnetic bearing


First experimental units

September 2006 : first runnig unit with magnetic bearing (85 000 r.p.m.)

One of the following prototypes (up to 130 000 r.p.m.)



First experiments with LCM modular electronics

Step by step down sizing and cost reduction

Rieter own development with JKU/LCM support

Experimental results - design

SIELES

Prototype

Integrated spinning unit

High speed motor

Magnetic bearing

			 * 		•	•	•	×	:•:	. .		•				 * 	200	•			200			•				(#1)	
Jiří	Slou	oens	ký,					÷			•			¥		•	141		×		242		·	Riet	er S	YS F	P-R	1	7,

Experimental results – textile technology, energy

Yarn propertiess – fully comparable with comercial machines

Dust deposit in the rotor groove - at least 10 x less

After 8 hours of spinning

Conventional unit

unit with magnetic bearing

Energy consumption : reduced at least 30 % on 100 000 r.p.m. ($110 \text{ W} \rightarrow 75 \text{ W}$)

(The energy for spinning and air friction remain the same)

		• •			•	•	•				•	•		•		· •)		•	•		•	•	•		•		•	•	•			
Jiří	Slou	upen	ský,		÷		÷									•	5 8 2			×				242	•		Rie	ter S`	YS F	'-R	1	8,

Success because of close collaboration between university and industry

Thanks for your attention