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Abstract—Many industrial companies are adopting magnetic
bearings for high speed compressors at this time. A flexible rotor
test rig of approximately 1.2 m in length was developed with four
active magnetic radial bearings. It was employed to evaluate the
control of destabilizing aerodynamic cross coupling stiffness Q
in the center of the machine. The two end AMBs were used for
support and one center AMB used to apply the cross coupled
stiffness corresponding to a typical location of gas seal cross
coupled stiffness sources. The fourth AMB was employed as a
system exciter. Unfortunately for the compressor manufacturer
and the end user, often the magnitude of the cross coupled
stiffness changes with various compressor operating conditions.
The test rig shaft operated up to about 18,000 rpm, through the
first bending critical speed which was at approximately 14,000
rpm.

µ-synthesis control was used to achieve highly effective control
and low vibration response with the selection of an averaged value
of cross coupled stiffness Q and a set of useful system uncertainty
weighting functions when the controller does not have exact
advance notice of the cross coupling stiffness amplitude. Details
of the application of the mu synthesis controller implementation
are presented. A physical approach to modeling the Q uncertainty
involved selecting an expected nominal value of the real part of
the first rotor system eigenvalue for the rotor first bending mode
with an expected range of uncertainly above and below that
value. Then suitable weighting functions were developed for the
mu synthesis controller design. The measured sensitivity function
was below 3 at 7,000 rpm when the rotor was subjected to high
cross coupled stiffness at the center.

I. INTRODUCTION

One of the more pressing problems in the rotating machin-
ery industry today concerns that of high pressure compres-
sors with gas seal/liquid aerodynamic cross coupling forces
near the center of a flexible rotor [1]. Applications include
compressors in the oil, gas and chemical industries. A typical
compressor rotor is shown in Fig. 1a and a compressor train
in Fig. 1b. An interior photograph of a multistage compressor
compressor is shown in Fig. 2.

Magnetic bearings are increasingly used for the bearing
system and always used in subsea applications. Often, the
value of the cross coupled stiffness is not well known. Also,
the seal location is near the center of the rotor but the source
of damping, whether the radial bearings are fluid film or
magnetic, is located at the bearings which are placed at the
ends of a long flexible rotor usually operating above the first
bending critical speed [2], [3]. The result of high cross coupled

(a) C16 Compressor Rotor

(b) C16 Compressor

Figure 1: Solar Turbines C16 Pipeliner Compressor

stiffness is the excitation of rotor whirl at the compressor first
bending critical speed, as illustrated in Fig. 3. An important
issue with magnetic bearing systems in such cases is the
treatment of uncertainty in the magnetic bearing system.

The frequency spectrum for a compressor undergoing such
instability is shown in Fig. 4. The subsynchronous vibrations
(SSV) are at 2520 cpm when the operating speed is 16,000
rpm. As the compressor designs continue to evolve with higher
operating speeds and pressures in magnetic bearing supported
machine, the problem will require a lot of improved analysis
and control technology.

The concept of a destabilizing aero cross coupled stiffness
acting on a flexible rotor is illustrated by Ehrich [1] as shown
in Fig. 5. The destabilizing cross coupled force Fxc acts in
the direction of positive whirl. The pattern of poorly damped
linear unstable rotor vibrations is shown in Fig. 6a where the
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Figure 2: A multistage centrifugal compressor with upper
casing removed

vibrations are predicted to go off to infinity. In reality, the
shaft eventually hits something, such as the auxiliary bearings
and the nonlinear amplitude plot, as illustrated in Fig. 6b goes
into a limit cycle. However, severe damage to the auxiliary
bearings or other machine close clearance components may
occur if the rotor instability is not robustly controlled.

Some formulas are used to estimate cross coupled stiffness
Q such as the modified Alford equation [3] as given in Eq. (1).
However, the numerical value of Q is often not well known, as
noted above. This model uncertainty presents the opportunity
for the application of robust modern control, which is the main
subject of this paper.

Q =
16×P×MW

D×h× f
× ρD

ρS
(1)

The primary objective of this work is to develop a state
space model of a flexible rotor-AMB system which models a
compressor undergoing cross coupled excitation. The model
includes uncertainty features: plant disturbances, sensor noise,
actuator and system error signal [4]. A four block mixed sensi-
tivity problem is formulated and diagonal weighting functions
developed [5]. DK iteration was employed to optimize the
system performance [6]. The controller was then implemented
experimentally while operating well above the first bending
critical speed. The system sensitivity function performance
was evaluated and system damping measured using a single
channel backward autoregression approach [7].

II. FLEXIBLE ROTOR - AMB TEST RIG WITH EXCITERS

The test rig is shown in Fig. 7. The shaft has length 1.23
m, shaft diameter 100 mm, and weight 440 N. Two disks are
placed on the shaft as shown in Fig. 8. There are four magnetic
bearings – two end bearings for support of the shaft, one at the
center for simulation of the aero cross coupled stiffness, and

Figure 3: High Pressure Centrifugal Compressor Waterfall Plot
Showing Rotordynamic Instability

Figure 4: Spectrum Plot Showing Subsynchronous Vibration

the fourth one for external excitation to evaluate the system
damping properties, as illustrated in Fig. 9. The direct drive
motor is capable of a maximum operating speed of 18,000
rpm. A full description and characterization of the system is
given in Mushi, et al. [8]. It has auxiliary bearings with radial
clearance of 0.38 mm. Table I gives the details of the test rig
design.

The rotor has eigenvalues (undamped natural frequencies)
which change with speed due to gyroscopic forces, as illus-
trated in a Campbell diagram of rotor natural frequency vs.
operating speed shown in Fig. 10. The red lines in Fig. 10
represent 1X and 2X times operating speed. The shaft free-
free eigenvectors are shown in Fig. 11.

The plant model must be accurately determined for the
control process to work as intended. The rotor characteristic
transfer functions for the model nondrive end (NDEX) and
drive end bearings (DEX) are shown in Fig. 12 and compared
to experimental results. The agreement is good.
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Figure 5: Cross-coupled forces

(a) Linear Response

(b) Non-linear Response

Figure 6: Rotordynamic Instability Response

Figure 7: Active Magnetic Bearing Test Rig

Figure 8: AMB Test Rig Approximation of a Compressor

Table I: Test Rig Properties

Property Value Units

Total rotor weight 440 N

Rotor length 1068 mm

Bearing span 918 mm

Average shaft diameter 57.7 mm

Area moment of inertia 5.43×10−7 m4

Mass moment of inertia 0.0880 kg·m2

1st free-free lateral bending mode 13,200 rpm

Maximum speed 18,000 rpm

Motor power 3.7 kW

AMB radial clearance (average) 550 µm

Backup bearing clearance 250 µm

Support AMB stator length 43.6 mm

Support AMB bias current 4.0 A

Support AMB negative stiffness 0.6 - 0.9 MN/m

Support AMB current gain 90-100 N/A

Power amplifier DC bus 150 V

Controller sampling rate 12 kHz
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Figure 9: AMB Test Rig Elevation View
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Figure 10: Rotor Campbell Diagram

III. A CONTROL SYSTEMS PERSPECTIVE: MODEL BASED
SYNTHESIS AND ANALYSIS TOOLS

A. Mu-synthesis and analysis

The µ-synthesis technique is the only multivariable control
design approach that directly addresses the robust performance
problem, i.e., the design of a stabilizing control law that
guarantees a performance specification for all plant model per-
turbations within a defined set [9]. The theory was introduced
in the 1980s, and steadily improving commercial software
tools have been available in the last decade. A few notable
prototype industrial rotor-AMB systems utilizing µ-synthesis
have been documented in open literature [10], [11], but there
is scant evidence the application of µ-analysis techniques.
These facts highlight the significant challenges which remain
to be addressed in order for the full potential of these modern
techniques to be realized.

The most prominent challenge is the relatively high design
complexity involved with these techniques and concerns re-

Figure 11: Rotor Undamped Mode Shapes

garding practical implementation and field troubleshooting. A
state space block diagram of the flexible rotor-AMB plant for
this test rig is shown in Fig. 13.

The last issue, field troubleshooting, is helped by the ad-
vent of remote diagnostic and communications capabilities
of current AMB control systems that allow online system
identification and auto-tuning [12], [13]. The second concern is
less of an issue nowadays as the available computing power for
executing real-time control algorithms continues to increase.

The first issue mentioned looms large as the translation of
engineering performance specifications into formal constraints
in the form of weighting functions, uncertainty models, and
other design criteria remain a largely heuristic process [14].
These issues are not unique to µ-techniques, but symptomatic
of the limited penetration of advanced multivariable control
into industrial systems. One may argue why bother with an in-
vestment in µ-synthesis if a hand-tuned compensator designed
by a control practitioner has the potential to deliver similar
performance (this is particularly relevant in the industrial
control system community dominated by hand tuned PID-like
compensators). Maslen and Sawicki [15] answer this question
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by suggesting that investments in µ-techniques result in an
improvement in the engineering process. The complexity and
performance demanded of modern precision control systems
is such that the notion when provided with a model and
performance specification one can “turn a crank” and deliver a
control law is naive [16]. Assuming that an accurate nominal
plant model is available (a nontrivial task in many cases [17]),
the remaining challenge is the development and continuous re-
finement of performance specifications and uncertainty models
that yield controllers approaching the theoretical maximum
achievable performance.

B. Mixed sensitivity weighting function selection

Performance specifications are characterized in the fre-
quency domain as typical rotor-AMB systems lack specific
time domain specifications, e.g., overshoot and settling time
and these do not fit directly into the frequency based robust H∞

and µ-synthesis frameworks [14]. The loop-shaping approach
is preferred over the signal based approach as it does not
require implementation specific information on the magnitudes
of signals in the closed-loop system [18]. Sensitivity functions
serve as useful measures of control performance in the fre-
quency domain. Considering a unity feedback connection of a
plant G(s), controller K(s), with exogenous disturbance forces
acting on the plant input and output di and do respectively,
sensor noise n and control effort u, controlled variable output
y and controller reference input signal r. A block diagram of
the flexible rotor AMB system is given in Fig. 14.

y(s) = Ti(s)r(s)+So(s)do(s)+GSo(s)di(s)−To(s)n(s), (2)
u(s) = KSo(s)r(s)−LSo(s)do(s)−Si(s)di(s)−KSo(s)n(s)

(3)

where several sensitivity functions can be defined [19]:
• Input Sensitivity Si(s), (I+K(s)G(s))−1: a measure of

system rejection of disturbances at plant inputs;
• Complementary Input Sensitivity Ti(s), K(s)So(s)G(s):

a measure of the effect of disturbance at the reference
input on the control signal;

• Output Sensitivity So(s), (I+G(s)K(s))−1: a measure
of the noise rejection and closed-loop command tracking;

• Complementary Output Sensitivity To(s), GSi(s)K(s): a
measure of the effect of noise on the control signal;

• Process Sensitivity GSi(s): a measure of the closed loop
mechanical compliance (reciprocal of stiffness) of the
rotor-bearing;

• Control Sensitivity KSo(s): a measure of the control
effort.

The ISO/API input sensitivity function limit for class A
(new machines) is less than 3.0. An output sensitivity function
for the test rig NDEX and DEX sensors with collocated PID
control is given in Fig. 15. It exceeds the class A limit.

A bound on a single sensitivity function, such as the output
sensitivity takes the form of ||Ws(s)S(s)||∞ < 1, where Ws(s) is
a stable, proper transfer function. If the inequality is satisfied,
the inverse weighting function W−1

s (s) represents the upper
bound on S(s). A typical inverse weighting function to achieve

low frequency disturbance attenuation, for example, is shown
in Fig. 16.

For high performance motion control systems typified by
rotor-AMB applications, a single sensitivity provides insuffi-
cient degrees of freedom to simultaneously specify disturbance
rejection region while minimizing controller bandwidth and
as well as reference tracking performance [4]. By combining
several weighted sensitivity functions, i.e., ||Ws(s)S(s)||∞ < 1,
||Wu(s)KS(s)||∞ < 1, and ||Wr(s)T (s)||∞ < 1, into a stacked
objective:

min
K

∥∥∥∥∥∥∥∥
Ws(s)S(s)

Wu(s)KS(s)

Wr(s)T (s)

∥∥∥∥∥∥∥∥
∞

< γ (4)

and letting the H∞ synthesis process handle the trade-offs
between competing goals so that maximum performance may
be attained.

Experimental measurements of the sensitivity function for
the x and y axes with cross coupled stiffness applied at the
center AMB with standard PID control are presented here. The
first one is given in Fig. 17 for a cross coupled stiffness value
of 2.6MN/m and a peak sensitivity function of 2.5. With this
level of cross coupling, the rotor satisfies the criteria of class
A operation. With a higher value of cross coupled stiffness
of 3.15 MN/m, the peak sensitivity function shown in Fig. 18
is 4.6 MN/m. Now the rotor does not qualify as a class A
operation.

The four-block problem in Eq. (4) provides a means for
any three non-complimentary functions to be weighted indi-
vidually. A diagram of the four block system is shown in Fig.
18. The advantages of the four-block scheme over the two or
three block problems are its well-posedness and avoidance of
pole-zero cancellation by the synthesized controller [20], [21].

Figure 19 illustrates the feedback connection of the weight-
ing functions to the plant and controller blocks. The reference
input r and disturbance input d are new signals introduced.
Shaping the control sensitivity function KS(s) is necessary to
effect a controller gain roll-off at high frequencies to avoid
exciting unmodeled dynamics or amplifying sensor noise.
Shaping the process sensitivity function GS(s) affects the
closed-loop damping, while the shaping the output sensitivity
S(s) translates directly to modifying the disturbance rejection
properties. The complimentary sensitivity T (s) cannot be
shaped independently of the aforementioned functions as a
result of the complimentary nature of the four sensitivity
functions.

The system gain from disturbance inputs to performance
outputs is [

z1

z2

]
= Tzw

[
d

r

]
(5)

and to guarantee the desired nominal performance specified
by the above sensitivity functions, the cost γ to be minimized
by the controller K must be less than unity.

This results in upper bounds on S, GS, KS and T, are(
WpWr

)−1,
(
WpWd

)−1,
(
WuWr

)−1, and
(
WuWd)

−1, re-
spectively. The cost function represented by Eq. (6) solves the
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Figure 12: Rotor Transfer Functions

Figure 13: Control System Block Diagram

nominal performance problem. Since ∆ has been defined in
block diagonal form, the straightforward extension of Eq. (6)
to solve the robust performance problem is carried out by
defining the structured uncertainty set ∆ and finding the

controller that minimizes µ∆(M) using D-K iteration [22].

min
K

∥∥Tzw
∥∥

∞
< γ∥∥∥∥∥

[
Wp(I+GK)−1Wr WpG(I+GK)−1Wd

WuK(I+GK)−1Wr WuGK(I+GK)−1Wd

]∥∥∥∥∥
∞

< γ∥∥∥∥∥
[

WpSWr WpGSWd

WuKSWr WuTWd

]∥∥∥∥∥
∞

< γ

(6)

IV. MODELING UNCERTAINTY

Modeling of the impact of the cross coupled stiffness (CCS)
or Q on the open-loop plant dynamics can be carried out
directly from first principles or phenomenologically. In the
case of the former, an uncertain CCS is modeled directly
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Figure 14: AMB System Block Diagram

Figure 15: Output sensitivity of NDEX and DEX channels of
collocated PID controller.

as a real-valued stiffness varying between 0 and 4 MN/m
acting at the rotor midspan. Therefore, the associated rotor
displacements as shown in Eq. (7) are the shaft finite element
locations x23 and y23. The system schematic is shown in Fig. 8.

Mq̈+(D+ΩG)q̇+Ksq = BmagFmag +BwFw (7)
yr = Cq (8)

Assuming the CCS (Q) is the sole exogenous disturbance in
the system:

BwFw = Q

[
0 1

−1 0

]{
qx23

qy23

}
(9)

where the stiffness Q can be modeled in two ways:

1) As a real parameter varying from 0 to 1.8 MN/m with a
nominal value of 0.9 MN/m denoted CCS Model 1, or
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Figure 16: Typical inverse performance weighting function
W−1

p (s)

Figure 17: Sensitivity Function, Q = 2.6 MN/m

2) As a real parameter varying from 0 to 2.4 MN/m with
a nominal value of 1.2 MN/m denoted CCS Model 2.

The resulting model shows, as expected, increased coupling
between the x and y lateral rotor displacements at all rotating
speeds. Figure 20 demonstrates the coupling with four Bode
plots and a singular value plot of the nominal plant augmented
with the uncertainty defined by CCS Model 1.

While the demonstrated coupling between the axes is
mathematically correct, the additional dynamics complicate
the model and present an open-loop plant that is more of
a challenge to validate and control. Increased conservatism
arises as Q affects several parameters within the plant model.
While the effect on the Nc1 rotor pole is important and the
most desired to be captured by this uncertainty definition,

7
ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 791



Figure 18: Sensitivity Function, Q = 3.15 MN/m
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several collateral effects occur such as the perturbation of Nc3
and Nc4 poles and zeros are not desired.

Phenomenological modeling of the uncertainty attempts to
model the empirical effect of the CCS on the plant rather than
the intrinsic dynamics of the rotor-AMB system which have
been shown to be highly conservative [22]. By far the most
significant effect of CCS on the plant is the trajectory of the
RHP pole of Nc1 as CCS is varied (see Fig. 21 and Table II).
Increasing the CCS has the effect of splitting the real RHP
pole due to Nc1 into a complex pole that moves further to
the right of the complex plane. Assuming the Nc1 complex
eigenvalue (an RHP pole) of the form σ ± jω , the effect of
CCS on σ can be modeled either:

1) as a real-valued uncertainty varying from 200 to 240
rad/s with a nominal value of 220 rad/s denoted CCS
Model 3, or

2) as a real-valued uncertainty varying from 200 to 260
rad/s with a nominal value of 230 rad/s denoted CCS
Model 4.

An eigenvalue perturbation description was used to repre-
sent the variations above, and combine into the state-space
description of the rotor-AMB system. The advantages of

Table II: The effect of varying CCS magnitude on the location
of Nc1 eigenvalue

Q, N/m Eigenvalue fn, Hz ζ

0 195 31 -1

5 ·105 199±55.7 j 32.9 -0.963

1 ·106 199±55.7 j 32.9 -0.963

1.5 ·106 207±80.7 j 35.5 -0.928

2 ·106 217±104 j 38.2 -0.904

2.5 ·106 227±125 j 39.8 -0.908

3 ·106 237±104 j 44.1 -0.855

4 ·106 256±104 j 44.9 -0.818

the phenomenological approach are that x,y coupling (off-
diagonal gain) is minimized, allowing the nominal model
developed. Effects of the uncertain CCS modeled through
a single eigenvalue perturbation remain largely in the low
frequency band around Nc1. The uncertainty set described by
CCS Model 3 and 4 is thus compact for the equivalent physical
responses. The gap metrics of CCS Model 3 and CCS Model
4 are identically 0.624 indicating a not unreasonable distance
from the nominal plant description.

V. CONTROLLER EVALUATION

The optimum benchmark controller was developed after
several iterations of the weighting function modification and
control synthesis. Details of the optimization process are
given in Mushi [22]. The benchmark serves as the root from
which other controllers were developed. Key properties of
the benchmark controller are evaluated below to highlight
the details of its construction. The analysis largely focuses
on the control response, and the Bode plots and the singular
value plots are used to show the magnitude and phase, MIMO
response, and closed-loop actuator stiffness of the controller.

Convergence of the DK iteration of the µ-upper bound
occurred within 4 iterations. A zeroth order D-scaling ma-
trix was generated during each iteration. This results in the
minimum achievable controller order of 48. A discrete-time
implementation of this control law sampled at 12 kHz executes
within 52 us on the DSP hardware. This represents 62% of the
available interrupt [23]. The evolution of the µ-upper bound
as a function of frequency during the D-K iterations and the
minimum peak value of µ is 1.02.

Analyzing the pole and zero locations of the controller
is important to examine whether pole-zero cancellation has
occurred between the controller and plant. Pole-zero cancel-
lation is at best highly undesirable due to the absence of
robust stabilization, and at worst likely to produce unstable
controllers if the plant has RHP zeros. The poles and zeros
of the benchmark controller are shown in Fig. ??, where it is
confirmed no cancellation with plant poles or zeros occurs.
This is a byproduct of using the four-block mixed sensi-
tivity framework for specifying the controller performance.
Interestingly, the controller contained four pairs of complex
RHP zeros at 205± 3449 j, 189± 3431 j, 81± 1180 j, and
80±1175 j. These non minimum-phase zeros introduce phase
lag in the vicinity of the bending modes and serve to augment
their damping [24].
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Figure 20: Bode plots of response of Benchmark I controller across all four channels. In and Out refer to input and output
directions, while the indices 1, 2, 3 and 4 refer to NDE-X, DE-X, NDE_Y and DE-Y, respectively.

The equivalent closed-loop mechanical stiffness of AMB
actuator as a function of frequency [25] is:

Keqi j( jω) = KiGsGasRe
(
Ki j( jω)

)
(10)

where Gs is the sensor gain, Gas is the amplifier gain, Ki is the
AMB current gain and Ki j( jω) is the frequency response of
the i, j controller channel. This equivalent stiffness is plotted
in Fig. 22 can be compared to similar plots for mechanical
bearings. The plots show that a similar stiffness is apparent
along the x and y axes of each bearing, while the driven-end
bearing has an overall higher low-frequency stiffness than the
non driven-end bearing.

VI. µ -ANALYSIS OF CONTROLLERS WITH
CROSS-COUPLED STIFFNESS UNCERTAINTY

The aim of this section is to examine the changes introduced
by the addition of a cross coupled stiffness Q uncertainty

description to a plant model already augmented with gyro-
scopic model uncertainty. Several different models with CCS
uncertainties – CCS models 1, 2, 3, and 4 – are considered in
this section.

The two controllers synthesized with block-diagonal perfor-
mance weight Wp,4 and either CCS Model 3 or CCS Model 4
yielded a smaller increase in µ from the Benchmark cases
as compared to the controller designed with 70% support
Figs. 23, 24, the RS bounds have a sharp peak close to 200
Hz seen with CCS Model 3. Breaking down the nominal
performance of these two controllers again reveals similar
system gain behavior with frequency to Benchmark Ic3 [22].
A lower bias current was necessary for block diagonal Wp,4
Ic2 controller to achieve stable suspension of the rotor. This
is likely to contribute to slightly reduced performance with
respect to CCS since a higher bias current is associated with
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Figure 23: µ-Analysis of nondiagonal performance weight
Wp,4 controller designed with plant uncertainty including
Speed Model 2 and CCS Model 3.

higher values of the AMB current gain Ki.

VII. EXPERIMENTAL RESULTS

The benchmark controller was tested in the flexible rotor-
AMB test rig. Bode plots and phase angles for 8 of the 16 total
loop transfer functions taken at 0 rpm are shown in Fig. 25.

The measured output sensitivity functions measured at 5,000
rpm and 10,000 rpm are shown Bode plots in Fig. 26. The
measured amplitude values for the inverse weighting function
performance bound is less than the ISO/API class A/B limit
indicating high levels of disturbance rejection. The peaks
values occur in the range of the rigid body modes suggesting
a variation of the actuator gain properties Ki, Kx, from their
expected values. There are no peaks near bending modes
which is desired for robust performance. The peak sensitivity
was measured to be 9.17 dB (2.87) over all of the control
channels. Other sensitivity functions were also measured with
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Figure 24: µ-Analysis of nondiagonal performance weight
Wp,4 controller designed with plant uncertainty including
Speed Model 2 and CCS Model 4.

similar robust results. The complementary sensitivity function
results for sensor noise are shown in Fig. 27.

VIII. FORCED RESPONSE

The rotor was able to operate above the first critical speed, at
approximately 14,000 rpm as shown in Fig. 28. A high speed
balancing run was required to get through the first critical
speed and operate up to 18,000 rpm.

IX. CROSS COUPLED STIFFNESS STABILITY THRESHOLD

The cross coupled stiffness Q destabilizing forces were
applied to the rotor using the center AMB actuator. The rotor
rigid body modes are easily stabilized [26]. The stability of the
first rotor bending mode Nc1 is strongly affected by the cross
coupled stiffness. The maximum value of the cross coupled
stiffness Q prior to the onset of instability is denoted as the
stability threshold. An equivalent statement is that when the

system effective damping is zero, the linear stability threshold
has been reached. The cross coupled stiffness reduces the
damping of the forward whirl mode until it reaches instability.

The two best system models of cross coupled stiffness Q
effects assumed that the complex eigenvalue of the excited first
rotor bending mode had certain characteristics. In the first Q
controller model, labeled No. 3, a real valued uncertainty of the
first bending mode eigenvalue from 200 rad/sec to 240 rad/sec
was modeled with the nominal value of 220 rad/sec. In the
second Q controller, labeled No. 4, a real valued uncertainty
of the first bending mode eigenvalue from 200 rad/sec to 260
rad/sec was modeled with the nominal value of 230 rad/sec.
This specification of uncertainty is a physical approach to the
Q stiffness effects.

To experimentally determine the stability threshold, succes-
sively higher cross coupled stiffness values were imposed on
the rotor. The system damping ratio was measured by using a
blocking approach [27]. Circular rotor excitation was applied
using the quarter span AMB an the response measured, as
shown in Fig. 29.

Values of Q used in the testing were Q = 0, 600, 1200, 1800
N/mm operating at 7,000 rpm. The experimental stability plots
of system log decrement vs. Q are given in Fig. 30. The first
measurement is without the Q uncertainty model, as shown
in Fig. 30a for several benchmark controllers. The second
measurement is with the Q uncertainty model, as shown in
Fig. 30b. The Q controller model 3 with block diagonal
weighting matrices performed the best in Fig. 30b.

X. CONCLUSIONS

The issue of robust control related to destabilizing seal aero
cross coupled stiffness in high pressure industrial compressors
using AMB supports does not have a simple solution. How-
ever, the research reported in this paper shows that modern
control with the mu synthesis approach provides one suitable
method of solution. Usually these compressors are operated
supercritical and with the issue of subsynchronous vibration
a problem. While a few prototype industrial machines with
µ-synthesis control have been reported in the literature, there
has not been very much literature reporting on the problem of
cross coupled stiffness with the level of detail found in this
paper.

A systematic treatment of mu synthesis modeling and anal-
ysis has been presented to illustrate the modeling procedure.
An extensive treatment of system uncertainties, plant input
disturbances, plant output disturbances, sensor noise, control
effort and controller input reference signal, has been presented
with a four block uncertainty model. A total of 14 controllers
were investigated with the focus here on two of the most suc-
cessful ones. It has been shown that when an accurate model of
the flexible rotor-AMB system including all important features
– rotor, AMB, sensors, amplifiers, gyroscopic effects, cross
coupled stiffness estimates – and the uncertainty models with
suitable weighting functions, the controller is successful in
achieving robust control. DK iteration optimization has been
shown to achieve the desired mu control level in only a few
iterations.
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Figure 25: Bode plots of measured loop transfer functions.

The method of assessing the system performance through
sensitivity functions was an approach jointly adopted relatively
recently by ISO/API and employed in this work. The exper-
imental results show that the best controllers developed in
this research were able to qualify the test rig performance as
ISO/API class A even with high levels of aero cross coupling.
This result has not been reported in the literature prior to this
paper.

Both of the best Q controllers were successful in stabilizing
the first rotor bending mode using a physical approach. This
approach shows that the key to controlling aero cross coupled
stiffness due to seals at the center of an industrial compressor
is treating the real part of the Nc1 eigenvalue with a nominal
value of expected cross coupled stiffness and a range of values
treated as uncertainty in the rotor AMB system. A suitable
uncertainty weighting function structure must be included to
properly stabilize the system.

There were also some unexpected results. For example, the
controllers with the block diagonal cross coupled stiffness un-
certainty performance weighting did well in providing robust

control of the system for the stability threshold. However, an-
other controller without that performance weighting function
provided a stability threshold that was as good and slightly
better.

It seems likely that the methods developed in this paper
have a useful purpose in industrial high pressure compressor
with AMB supports. It is hoped that this paper assists in that
effort.

Authors’ Note
The authors would like to thank the organizers of the ISMB

14 Symposium for allowing such a long keynote paper. While
this paper provides a lot of detail regarding this research topic,
it is noted here that many aspects of this research project could
not be included in this paper even with all of the material
which was included. The authors recommend readers who
want to know more to consult Mushi [22].
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APPENDIX A
STATE SPACE DESCRIPTION

A complete state-space description for the uncertain plant
with including the dynamic contribution of performance
weighting functions and the modeled uncertainty from the
bending modes is

P(s) :=




ẋ(t)
c(t)
z(t)
y(t)

 =


A B∆ B1 B2

C∆ 0 0 0
C1 0 D11 D12

C2 0 0 0




x(t)
v(t)
w(t)
u(t)

 ,
v(t) = ∆c(t)

(11)
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Figure 27: Bode plots of measured complementary sensitivity function or closed-loop response.

where

A =


Âr 0 0 0

Bd,uCr,s Ad 0 0

−Bw,pDdCr,s −Bw,pCd Aw,p 0

0 0 0 Aw,u


B∆ =

[
0 I2 0 I2 0

]>
c∆ =

[
0 −2ω2

3 0 −2ζ ω3 0

0 −2ω2
4 0 −2ζ ω4 0

]
C∆ =

[
c∆ c∆

]

B1 =

[
B̂rW d 0 0 0

0 0 Bw,pW r 0

]>
B2 =

[
B̂r 0 0 Bw,u

]T

C1 =

[
−Dw,pDdCr,s −Dw,pCd Cw,p 0

0 0 0 Cw,u

]
C2 =

[
DdCr,s Cd 0 0

]
D11 =

[
0 W rDw,p

0 0

]

D12 =

[
0

Dw,u

]

(12)
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Figure 28: Rotor displacement (0-pk) and perturbation current
at the NDE AMB as a percentage of the minimum clearance
and bias current, respectively during a run-up to 18,000
rpm. Measurements are taken both before and after dynamic
balancing.

and where ω3 and ω4 are the nominal natural frequencies of
the first two bending modes Nc3 and Nc4, and ζ = 0.2%
is the modal damping. The uncertain state space model P
contains 48 states, a contribution of 36 states from rotor-
AMB model G, and 12 states from the dynamics of W p(s) and
W u(s) repeated across four control channels. Balancing using
a diagonal similarity transformation was used to improve the
numerical conditioning of state-space representation of P.

APPENDIX B
NONDIAGONAL PERFORMANCE WEIGHTS

Nondiagonal performance weights show promise as means
of maximally exploiting the available degrees of freedom dur-
ing control synthesis [28]. The MBTRI plant in the presence
of significant cross-coupling the plant becomes less diagonally
dominant. This suggests that a controller synthesized with
nondiagonal weighting functions may have additional degrees
of freedom to optimize the overall closed-loop sensitivity
leading to performance improvements. Four prototype nondi-
agonal scalings were developed to systematically evaluate the
effects of coupling and directionality between multiple control
channels:

1) Full block performance weight

W p,1(s) =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


×blkdiag [Wp,NDE ,Wp,DE ,Wp,NDE ,Wp,DE ] (13)

2. Cross-coupled performance weight

W p,2(s) =


1 0 0.5 0

0 1 0 0.5

0.5 0 1 0

0 0.5 0 1


×blkdiag [Wp,NDE ,Wp,DE ,Wp,NDE ,Wp,DE ] , (14)

3. Simple block-diagonal

W p,3(s) =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


×blkdiag [Wp,NDE ,Wp,DE ,Wp,NDE ,Wp,DE ] , (15)

4. Block-diagonal with scaled off-diagonal terms

W p,4(s) =


1 0.5 0 0

0.5 1 0 0

0 0 1 0.5

0 0 0.5 1


×blkdiag [Wp,NDE ,Wp,DE ,Wp,NDE ,Wp,DE ] , (16)

5. Block-diagonal with negative scaled off-diagonal terms

W p,5(s) =


1 −0.5 0 0

−0.5 1 0 0

0 0 1 −0.5

0 0 −0.5 1


×blkdiag [Wp,NDE ,Wp,DE ,Wp,NDE ,Wp,DE ] . (17)

The five controllers synthesized kept the same parameters for
Wu, Wd and Wr as the benchmark case.
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Figure 29: Rotor displacement response at 7,000 rpm on termination of blocking (indicated by the rising edge trigger) under
different magnitudes of CCS excitation. Benchmark I controller is used to suspend the rotor and the stability threshold for this
controller is 2000 N/mm.
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Figure 30: Experimental stability sensitivity plot of log decrement of Nc1 versus destabilizing cross-coupled stiffness Q for
several controllers compared with the Benchmark I.
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