
Fig. 1: A simplified single-axis actuator 
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Abstract—This paper introduces a new approach to estimate the 
rotor position of self-sensing magnetic bearings, which works on 
detecting the current slopes during both positive and negative 
voltage switching of PWM amplifiers. The position is estimated 
using the current slopes straightforward. The consideration of 
double current slopes shows advantages concerning the 
reduction of the influences of the coil resistance and the induced 
voltage due to the rotor movement. The current slope is 
calculated by multiple current sampling, therefore, no 
additional hardware is needed for the current slope 
measurement. Experimental results verified the proposed 
approach. 

I. INTRODUCTION 

Self-sensing magnetic bearing technology has been 
researched intensively since the last decades. Although 
commercial applications already exist [1], [2], there are still 
technical challenges concerning the improvements of dynamic 
and linearity of the position estimation. These two factors are 
very important for a fast and accurate position control. 

The modern self-sensing techniques all seem to use a kind 
of high-frequency interrogation signal for position estimation 
[3-6]. To avoid the hardware signal-injection unit, the 
switching ripple, which is a nature of PWM power amplifiers, 
is most applied. The reason is that the switched voltage as an 
interrogation signal has the highest frequency and amplitude, 
which should deliver the best estimation performance. But due 
to the position control, the duty cycle of the switched voltage 
varies, which leads to considerable decrease of the achievable 
performance. Many experts have worked on this issue in the 
past years [3, 5].   

The above approaches model the triangle current ripple 
waveform with a set of sinusoidal harmonics and consider the 
position estimation in the linear periodic point of view. Due to 
the nature of the inductance, high frequency harmonics have 
more amplitude deviations with the same inductance change 
caused by the rotor movement, and therefore make much more 
contribution to the SNR (signal-to-noise ratio) and to the 
dynamic of the position estimation. But the estimator based on 
the above modelling cannot handle all frequencies, especially 
in the high frequency region. Therefore, the current ripple is 
theoretically not fully utilized for the position estimation. 

To fully exploit the current ripple, it seems better to model 
it directly with triangle signals. Then, the current slopes will 
be used, as first introduced in [7]. This perspective looks 
directly at the nature of the current response of electromagnets 

driven by switched voltages. In [7], the rotor position is 
sensorless controlled, but there is no explicit position output, 
therefore, the position control and the position estimation are 
not decoupled. Independent position estimation makes the 
design of the position controller more flexible, so in [8], a 
slope based estimation approach was proposed.  

Till now, the influences of the coil resistance and the 
induced voltage due to the rotor movement are neglected in 
the position estimation. The proposed approach in this paper 
takes them also into account and eliminates them. Thus, it 
should deliver better estimation performance. Details about 
the approach will be given in the following sections. 
Beginning with the simplified modelling in Section II, the 
basic idea of the proposed approach will be explained. Then, 
mechanisms to realize the idea will be given in Section III. 
This self-sensing technique will be applied to a real magnetic 
bearing, which has coupled control fluxes and permanent 
magnet excited bias fluxes. The modelling is quite different 
and has to be adapted. This will be explained in Section IV. 
Experimental results will be discussed in Section V. 
Conclusions and future work will be given in the last section. 

II. MODELLING OF A SINGLE-AXIS ACTUATOR 

To explain the proposed approach, the model of a single-
axis actuator is shown in Fig. 1. We point out, that the 
proposed method is also valid for higher number of axes, as 
long as the magnetic paths of each electromagnet are 
independent from the other, which is the case for most hetero-
polar magnetic bearings.  

We define the origin of the x-axis in the middle between 
the two electromagnets and distinguish the electric and 
geometric quantities of different electromagnets with 
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Fig. 2: Two-level PWM with double sampling per period 
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subscripts 1,2. For simplification, we neglect eddy 
currents, flux leakage and edge flux effects and assume a 
sufficient high permeability Fe → ∞ of the laminated iron 
cores. Then, according to Faraday’s law and to Ampere’s law, 
we get the following basic equations: 

	,		 1,2. 

2 0 	,		 1,2. 

In the above equations,  is the magnetic flux linkage of 
the electromagnet coil,  is the total coil resistance of each 
electromagnet,  is the coil current,  is the coil terminal 
voltage of the electromagnet, 0 is the permeability of free 
space,  is the area of each pole face, and N is the number of 
turns of one coil. So each electromagnet has a total number of 
turns of 2N, and  is the individual air gap width of each 
electromagnet. Additionally, we have the geometric 
constraints, 

, 

, 

where X0 is the nominal air gap width, and x is the position 
deviation. We apply the time derivative to both sides of (2) 
and get 

2 0 ⋅ 	.	 

Both (1) and (5) are valid in the time domain. We put (1) 
into (5) and get 

2 0 ⋅ 	.	 

If we use a two-level PWM (Pulse Width Modulation) 
amplifier, then the coil voltage uk changes between Udc and 
−Udc, where Udc is the DC-link voltage of the PWM amplifier. 
Within one switching period, the following conditions, 

dc	,  

during the negative switching interval, and 

dc	,	  

during the positive switching interval, are given. In a digital 
control system, we can choose the control frequency equal to 
the PWM switching frequency T, which means that the fastest 
possible control is applied. Further, we apply two samples per 
PWM cycle. At these sample points, (7) and (8) are fulfilled 
respectively, as shown in Fig. 2. We consider the nth PWM 
cycle and use the subscript α to represent the time interval α, 
when condition (7) is fulfilled, and β to represent the time 
interval β, when condition (8) is fulfilled: 	 α β 1 T⁄

0. Then we get two equations (9), (10), which are the discrete 
form of (6) during the negative and positive switching, 
respectively. 

dc , ,α
2 0

, ,α
⋅ , ,α

, ,α

, ,α
, ,α , 

dc , ,β
2 0

, ,β
⋅ , ,β

, ,β

, ,β
, ,β . 

The time interval between the two samples (n, α) and (n, β) 
is half of the PWM period 1 2 T⁄ , which is sufficient small, 
so we could neglect the changes of the air gap width and the 
velocity of the positioned body. Then we have  

, ,α ≅ , ,β , 	, 

, ,α ≅ , ,β , . 

If the duty cycle of the nth PWM cycle according to 
	 α β is 50%, we can further assume that 

, ,α ≅ , ,β , 	. 

With the simplifications of (11)-(13), we derive the 
following equation from (9) and (10), 

,
0

dc
,

∗ 	, 

where 

,
∗

, ,α , ,β	. 

Equation (14) estimates the air gap width of the 
corresponding electromagnet. In the modeling we do not 
neglect the influences of the coil resistance and the induced 
voltage due to the body movement, and we eliminate these 
influences with the double detection of the current slopes. 
Thus, (14) will deliver a more accurate position estimation. 
Further, if we exploit the geometric constraints of (3) and (4), 
then we can also eliminate the position offsets, consisting of 
the mechanical nominal air gap width and the additional 
equivalent air gap width due to the limited iron permeability 
Fe ∞ ! So from (3) and (4) we get 

, ,

2
	. 

Finally, considering (14) and (16) we derive the final 
expression of the estimated position during the nth cycle: 
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In the next section, implementation details will be 
explained, concerning the measurement of the current slopes 
and the mechanism to ensure the 50% PWM duty cycle for the 
position estimation. 

III. IMPLEMENTATION OF THE APPROACH 

The easiest way to measure the current slope is to use 
voltage transformers. With the current flowing through the 
primary coil of the transformer, the open terminal voltage of 
the secondary coil is proportional to the current slope, as 
described in [7]. This approach demands space for installing 
transformers, and it also increases the cost. So a modern way 
is to use high-speed A/D (Analogue to Digital) converters to 
sample several points within one switching state and calculate 
the current slope with the method of least squares [9-11].  

As shown in the preliminary work in [12], the current 
slopes are calculated via software. The number of multiple 
samples, which determines the accuracy of the slope 
calculation, is therefore limited by the system data transfer 
rate. Considerable improvement was made in [13], in which 
the calculation is performed in the FPGA (Field 
Programmable Gate Array). Further, the introduction of 
splitting of the PWM pattern into a sensing cycle, which has a 
fixed duty cycle of 50%, and a control cycle, which has the 
variable duty cycle (T0 –Tn)/T0, (T0 –Tn+1)/T0, … , for the 
current control, fits the requirement of (13) perfectly (Fig. 3). 
The duty cycle 50% gives zero change of the average current 
and does therefore not disturb the current control.  

As shown in Fig. 3, we apply multiple sampling with M 
sample points twice during the sensing cycle. We show here 
only the slope calculation for negative switching as an 
example. For the nth PWM cycle, we obtain with the M 
measured current values in,α,0; … ; in,α,M−1, measured at the time 
instants tn,α,0; … ; tn,α,M−1, the following current vector 

,α ,α, 	 ,α, 	 ,α, 	⋯	 ,α, , 

with the corresponding time vector, 

,α ,α, ,α, ,α, 	⋯	 ,α, . 

Then the current slope can be calculated using the method of 
least squares with 

,α

∑ ,α, ̅ ,α ⋅ ,α, ̅ ,α

∑ ,α, ̅ ,α
		, 

where ̅ ,α and ̅ ,α are the mean value of the M components of 
the vectors (18) and (19). To simplify the calculation in 
FPGA, we choose a fixed time interval Tm.s. between 
neighbouring samples. Then the components of the time 
vector in (19) can be described by 

,α, ,α,0 ∙ m.s., 0, 1, 2,⋯ , 1 . 

Considering (21), equation (20) becomes 

,α

∑ 2 1 ⋅ ,α,

1
6 ⋅ 2 1 ⋅ m.s.

		. 

In the same way, the current slope of positive switching is 
given as 

,β

∑ 2 1 ⋅ ,β,

1
6 ⋅ 2 1 ⋅ m.s.

	. 

With (22), (23) and (17), we determine the estimated 
position. The advantage is the simplicity of the system 
structure. From the hardware point of view, it is the same as a 
pure current control. Fewer hardware components mean 
increased reliability and more cost saving.  

A compromise is made between the accuracy of the 
position estimation and the dynamic of the current control. 
Due to the additional sensing cycle, whose average voltage is 
zero but which lasts for T0 like the control cycle (Fig. 3), the 
effective DC-link voltage for the current control is reduced to 
its half. Therefore, the current change rate, caused by sensing 
and control cycle, is slower than with a normal PWM pattern 
without additional sensing cycles. An approach to achieve the 
fastest possible current control under this limitation was also 
given in [13].   

Fig. 3: PWM pattern with split sensing and control cycles (Tα=Tβ=T0/2) 
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Fig. 4: Schematic representation of the used industrial magnetic bearing 
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IV. APPLICATION TO A REAL MAGNETIC BEARING 

The proposed self-sensing technique is applied to an 
industrial magnetic bearing, which has bias magnetic fluxes in 
axial direction, excited by permanent magnets, and coupled 
control fluxes in radial direction, excited by coils, as shown in 
Fig. 4. Therefore, due to the coupled magnetic paths of the 
two orthogonal x and y axes, the modelling is quite different to 
the one described in Section II.  

We take the same assumption for the magnetic properties 
as in Section II ( Fe → ∞) and define the quantities, shown in 
Fig. 4, as follows: For the subscripts 1,2,3,4,  is the 
individual air gap width;  is the total magnetic flux through 
the poles of the stator iron cores, which has opposite direction 
in stator core1 and core 2;  is the controlled coil current. 
Each coil has N turns, and the coils, which are located in the 
same position on stator core 1 and 2, are connected in series as 
a coil group. The voltage applied to each coil group is ; 
M,  is the magnetic field strength in each permanent magnet 

in axial direction. Each magnet has the remanence R, the 
length in axial direction M, and the cross section area in the 
radial plane M. The cross section area of the poles is P. The 
permeabilities of the air and of the magnets are 0 and M, 
respectively. 

According to Ampere’s law and Gauss’s law for 
magnetism, we obtain 8 equations to describe the electro-
magnetic properties of the given magnetic bearing. These 
equations are written in matrix form 

⋅  

with the matrix  defined as 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1

	, 

where 0.5 0 P M and M M. The vector of 
unknowns  is defined as 

M,1 M,2 M,3 M,4
T . 

The free term vector  is defined as 

0 P ∙ 1 2 3 4 

1 2
4 R M

0 P

T

 


with the positive direction of current flow as shown in Fig. 4. 

We apply the time derivative to both sides of (24) and get 

⋅ ⋅ 	. 

Using the double slope detecting technique for the current 
signals, for the given nth sensing cycle, we have 

,α ⋅ ,α ,α ⋅ ,α ,α	, 

and 

,β ⋅ ,β ,β ⋅ ,β ,β	. 

The assumptions (11)-(13) are still valid, and we further 
assume due to the high switching frequency 

M, , ,α ≅ M, , ,β M, ,  

and 

, ,α ≅ , ,β , 	. 

Then, (29) and (30) can be united to (33) 

⋅ ,α ,β ,α ,β	. 

We further define 

M, ,
∗

M, , ,α M, , ,β 

and 

,
∗

, ,α , ,β	, 

so we get 

⋅ ∗ ∗ 	. 

According to Faraday’s law, we have with the given arrow 
system of Fig. 4, 

2
d
d

	,			for	 1,2, 

and 

2
d
d

	,			for	 3,4. 

The coil terminal voltages during the α and β interval of the nth 
sensing cycle are 

, ,α dc and	 , ,β dc	for	 1,2,3,4. 

Therefore, we get with (35), (37), (38) and (39) 

,
∗ dc , 	 1,2	, 

and 

,
∗ dc , 3,4	. 

Now we construct a modified equation system, which 
takes the air gap widths ,  as unknown variables instead of 

,
∗ .  

⋅  

In (42) the matrix  with constant coefficient is 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

	, 

where dc. The modified vector of unknowns  is  

M, ,
∗

M, ,
∗

M, ,
∗

M, ,
∗  

, , , ,
T 



and the modified free term vector  is 
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where  is the common gain, which corrects the general gain 
error; and  is the cross gain, which compensates the 
different phase shift of the position on the two orthogonal 
axes. After this correction (51), the estimated orbit now 
matches the measured orbit, as shown in Fig. 7b. The 
estimation and measurement are also in phase now, as shown 
in Fig. 7d. Due to the gain scaling, the noise band is generally 
amplified, which requires a further improvement concerning 
noise cancelling.  

Fig. 8 shows the transient performance of the position 
estimation. The x-position of the rotor is kept at zero in the 
center. We give the y-axis position controller a step position 
command of 175 µm and record the measured and estimated 
position. The step response is given in Fig. 8c. A zoomed 
curve is plotted in Fig. 8d.  During the step change of the real 
position on the y-axis, there is no noticeable delay of the 
estimated position, which means a very good dynamic 
performance. The estimated position on the x-axis remains 
unchanged, therefore, the cross coupling due to the coupled 
radial fluxes is completely eliminated.  

VI. CONCLUSIONS AND FUTURE WORK 

A position estimation technique for self-sensing magnetic 
bearings is proposed in this paper. The derivation of the 
algorithm and the technical implementation is explained in 
detail. Experimental results show that the proposed technique 
also applies to existing industrial active magnetic bearings 
with coupled radial control fluxes and permanent magnet 
excited bias fluxes. 

The future work will be focused on the improvement of 
signal processing to further reduce the noise level without loss 
of estimation dynamic. The position controller will be adapted 
for the estimated position as control feedback. 
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Fig. 7: Original and corrected position estimation vs. position measurement:
a) Orbit of original position estimation, c) corresponding position curve of
a), b) corected position estimation, d) corresponding position curve of b). 
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Fig.8: Estimation performance of step change of the real position in y- axis: 
a) Position of x-axis during step change of the position in y-axis, b) zoom of 
a), c) step change of the real position in y- axis, d) zoom of c). 
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