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Abstract—The study of electrodynamic dampers is an impor-
tant point when working with electrodynamic bearings. These
dampers may also be used in combination with reluctant passive
magnetic bearings. This paper proposes a new design of a
robust and inherently stable radial electrodynamic damper with
a homopolar axial magnetic flux. An optimization, based on finite
element models, of this new bearing topology is made. For this
to be possible, a 2-D representation of the damper is developed
equivalent to the 3-D damper. The results of the optimizations
are presented and a discussion of the influence of some of the
parameters is done.

I. INTRODUCTION

High speed electrical drives are a promising technology
[1]. Fast spinning and high efficiency electrical drives may be
obtained using for instance permanent magnet drives, and thus
avoiding excitation losses. These high speed electrical drives
need adapted bearings. One remaining challenge is to design
high speed bearings with a high efficiency, a long lifetime
and simple to use. Developped solutions concern magnetic
bearings and gas bearings. However, gas bearings do present
poor dynamic stability and need additional damping [2]. On
the other hand active magnetic bearings lead to more complex,
less compact, and possibly more energy consuming designs.
Passive magnetic bearings could be a solution but they also
suffer from rotor dynamic stability issues: passive magnetic
bearings based on the reluctant principle have almost no
intrinsic damping [3] and passive magnetic bearings based on
the electrodynamic principle may also present a completely
unstable behavior when the damping present in the system
is not well managed [4]. Another solution for stabilizing
electrodynamic bearings has been investigated in [5] and
consists in adding dissipative elements between the statoric
part of the bearing and the ground. In this context, when
wishing to work with passive or electrodynamic bearings, the
study of dampers is an important part of the conception of
the bearing.

When designing electrodynamic dampers, attention has
to be paid to stability issues, just as for electrodynamic
bearings. Indeed, [6] observes that electrodynamic dampers
using conductors spinning with the rotor show an unstable
behavior at high spin speeds. They offer a first analytical
approach to understand those phenomena and make
experimental evaluations of it. In [7], a general parameterized
electromechanical model, based on a simple analogy between
the resistive-inductive dynamics of eddy currents and the
spring-damper in series dynamics, is described. [8] presents
a general parameterized electromechanical model for the

radial behavior of any kind of magnetic system subject to
eddy currents. It is shown that for stability issues, when the
intended effect is to produce damping, this damping should be
generated by the rotor whirling motion and not the spinning
motion.

Electrodynamic dampers are based on the interaction
between a magnetic field generated by a permanent magnet
or an electromagnet and currents induced by the variation
of this magnetic field. When the variation of the magnetic
field can be generated by a time-variation of the magnetic
field, one talks about a transformer e.m.f. on the conductor,
and when the variation of the magnetic field is generated
by a space-variation of the latter, induced for instance by
the motion of the conductor relatively to the magnetic field,
one talks about a motional e.m.f. A theoretical comparison
between dampers based on each type of e.m.f. is carried out
in [9], and it is shown that for a given magnetic field, a given
volume of conductor, and assuming that there is no inductive
behavior, dampers based on a transformer e.m.f. may lead to
a better damping efficiency. However, it is also said that in
practical cases, dampers based on a motional e.m.f. are often
better suited.
Electrodynamic dampers have been developped for damping
axial, radial or torsional rotor motions. They can be based on
a radial or an axial magnetic flux. [10] gives an overview of
all these dampers, and gives analytical tools to predict the
damping, but with a focus on the case of a radial damper
with a radial magnetic flux. In [11], the electrodynamic
bearing is combined with a radial electrodynamic damper
with axial magnetic flux. Torsional electrodynamic dampers
are investigated in [12] and [13].
An example of an inherently stable electrodynamic damper,
acting between the rotor and the stator, combined with a
reluctant passive magnetic bearing is given in [14].

This papers proposes a radial electrodynamic damper with
a homopolar axial magnetic flux, which could be used with a
reluctant passive magnetic bearing, but also with an electro-
dynamic magnetic bearing. This damper is inherently stable
thanks to its configuration, and is robust because it does not
need to insert a permanent magnet on a fast spinning rotor.
The effect of the insertion of teeth in the magnetic circuit
of the damper is investigated. Parametric optimizations, based
on finite element models, of this new bearing topology are
made. For this to be possible, an original equivalent 2-D
representation of the damper is developped equivalent to the
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Figure 1. Schematic view of the studied electrodynamic damper.

3-D damper. The results of the optimizations are presented
and discussed.

II. STRUCTURE AND PRINCIPLES OF PROPOSED
ELECTRODYNAMIC DAMPER

The electrodynamic bearing studied in this paper is a
radial damper with a homopolar axial magnetic flux, and
is presented on Fig. 1. The conductor is a bulk copper
plate linked to the stator, and is thus stationary. The axial
homopolar magnetic flux is generated by an excitation
winding, fixed in the airgap, and fed by a DC-current. This
fixed coil magnetizes a spinning steel magnetic circuit, which
allows on one side to have a robust design, as there are
no brushes, and no permanent magnets to be inserted in
potentially high spin speed pieces, and on another side, the
possibility exists to feed the coil by a current adapted to the
needed damping, so as not to generate damping, and losses,
when unnecessary.
This damper topology, with a conductor fixed to the stator, is
inherently stable. Indeed, when the rotor is spinning in a fixed
centered or out-centered position, no forces are produced.
However, when moving radially, damping will be produced.

The magnetic path is constituted of one central leg, an
external leg, and an airgap. The conductor is a copper annular
disk. The external leg of the magnetic circuit is terminated by
teeth, uniformly distributed, each of equal width. The width
of those teeth are characterized by a parameter called xteeth

which is worth 0 when the teeth are so large that there is no
air anymore between the teeth, and worth 1 when the teeth
are infinitely thin. As these teeth are only present on the
rotor, they do not produce any reluctant force, but they allow
for another magnetic flux distribution in the air gap, which
could increase the damping.
The damper geometry is characterized by the parameters
summarized in Table I, and the parameters to be optimized
are represented on Fig.2.

Table I
GEOMETRIC PARAMETERS OF THE DAMPER

Parameter Description Value

L1 half of damper axial length to be optimized

L2 damper radius to be optimized

l1 external leg width to be optimized

l2 yoke width to be optimized

l3 internal leg diameter to be optimized

hcu conductor thickness to be optimized

nteeth number of teeth fixed

xteeth teeth proportion to be optimized

lteeth teeth width (1− xteeth) ∗ l1/nteeth

hteeth teeth height g + hcu

g airgap between conductor 0.5mm

and ferromagnetic circuit

einsh1 thickness of insulation 3.8mm

between central leg and coil

einsh2 thickness of insulation 2mm

between external leg and coil

einsv thickness of insulation 3mm

between yoke and coil

L1

L2

l1

l2

hcu

xteeth

l3

Figure 2. Geometric parameters to be optimized.

III. OPTIMIZATION APPROACH

A. Objective function and optimization tool

The optimization is based on a genetic algorithm. The eval-
uation of each individual of the population is made by a finite
element model, as explained below. The objective function
is to optimize the damping coefficient for a given excitation
speed, per damper volume unit. This can be expressed as:

max
{L1,L2,l1,l2,l3,hcu,xteeth}

∫∫∫
J̄induced × B̄ dVconductor

v̄ Vdamper
, (1)

where J̄induced is the current induced in the conductor, B̄ is the
magnetic flux density, v̄ is the excitation speed, and Vdamper

is the damper volume.

B. Equivalent representation for 2-D FE model

A way to model the damper is to make a 3-D FE model
of the damper, but this is not realistic to be used for an
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Figure 3. Equivalent 2D representation of the damper.

optimization as it is too much time consuming. The damper
has an axisymmetric geometry, however the excitation speed
is not axisymmetric. This is why an equivalent 2-D model of
the damper was made. It is obtained by unfolding the parts
of the magnetic circuit above and underneath the conductor,
as illustrated in Fig. 3. The geometric dimensions of this
equivalent model depend on the initial geometry, and the
corner reluctances are taken into account by a lengthening
of the adjacent legs, based on the same idea as explained in
[15]. The excitation speed is applied on the conductor.
In this model, the objective function (1) simplifies to:

max
{L1,L2,l1,l2,l3,hcu,xteeth}

∫∫
Jinduced,zBy dSconductor

vx Vdamper
, (2)

As in the real system, the moving part of the damper will
have a magnitude-limited motion, we considered a sine signal
of amplitude vx for the excitation speed in the optimization.
The maximum displacement is worth 0.5 mm, and the highest
considered frequency is 400 Hz. This gives a maximum
amplitude of speed worth vx = 1.26 m/s.

Therefore, in the first instance, quasi-static time simulations
with a sinusoidal excitation speed have been conducted. For
these simulations, it is assumed that the electric time constant
is much smaller than the mechanical time constant. These
quasi-static time simulations are then compared to harmonic
perturbation simulations, where the problem is linearized
around the stationary solution with no speed. The results for
both simulations are shown on Fig. 4. The difference for the
highest considered frequencies comes from the fact that for
those speeds amplitudes, we are not in the linear part of the
force vs speed characteristics anymore, as can be observed on
Fig. 5. However, for the smaller frequencies, we are effectively
working in the linear part of this characteristic, and even for
the higher frequencies, the error remains small: less than 0.2%.
This very small difference validates the harmonic perturbation
approach.
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Figure 4. Evolution of the damping force as a function of the excitation
frequency, for quasi-static time-simulations and for harmonic perturbation
simulations.

Figure 5. Evolution of the damping force as a function of the excitation
speed for the optimized damper for f = 50Hz, i.e. an maximum amplitude
of speed worth vx = 0.16m/s.

IV. OPTIMIZATION RESULTS

The value of the optimized parameters for an excitation
frequency of 100 Hz, and 2 teeth are given in Table II, and
the equivalent 2-D representation of the damper is illustrated
on Fig. 6. The objective function Eq. (2) is then worth
2.66 106 Ns/m5 for an excitation current density of 5 A/mm2,
and the geometric dimensions (Table II) give a damper volume
(see Fig. 2) of 0.021 m3.

Tracing the evolution of the objective function with respect
to the teeth proportion, we can see on Fig. 7(a) that the optimal
damper does not have teeth. Indeed, given that the damping
force expression is F̄ = q(v̄ × B̄), there is no gain in having
teeth which give a lower magnetic flux density inside the
conductor.
On Fig. 7(b), the evolution of the objective function with the
conductor thickness is shown. There is an optimal thickness,
and this thickness is quite high. The fact that the iron reluc-
tance is not negligible probably plays a role in this optimal
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Figure 6. Equivalent 2D representation of the optimized damper, for 2 teeth
and an excitation frequency of 100Hz.
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Figure 7. Evolution of the objective function as a function of the optimization
parameters (a) xteeth the teeth proportion (b) hcu the thickness of the
conductor .

Table II
OPTIMIZED GEOMETRIC PARAMETERS OF THE DAMPER, FOR f = 100Hz

Parameter Optimized Value

L1 173mm

L2 138mm

l1 29mm

l2 43mm

l3 95mm

hcu 51mm

nteeth 2

x5 5%

(a)

(b)

Figure 8. Representation of the iron relative permeability (a) for hcu =
10mm and (b) for hcu = 52mm

value: when the copper thickness decreases, the iron becomes
highly saturated, as can be seen on Fig. 8.

The evolution of the normalized parameters with the exci-
tation frequency is represented on Fig. 9. We can observe that
their values are almost constant with frequency. This could
be expected, as the force amplitude increases linearly with
the frequency (see Fig. 4): the damping coefficient is constant
and remains optimal for all the considered frequencies. The
small variations of the optimal parameters are also due to the
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Figure 9. Evolution of the normalized parameters with the excitation
frequency.

sensitivity of the objective function which becomes low when
approaching the optimum, and they would dissapear if more
generations were taken in the genetic algorithm. This can be
observed on Fig. 7 and Fig. 10, where we are not exactly on
the optimum.

V. CONCLUSION

Previous works on electrodynamic bearings have shown
the importance of adding stabilizing damping to the system.
In this paper we have proposed an inherently stable radial
electrodynamic damper with a robust design. This damper can
easily be used with an electrodynamic bearing or with passive
magnetic bearings.
By an equivalent plane 2-D representation and harmonic
perturbation FE simulations, an optimization of the geometric
dimensions of the damper has been conducted, the objective
function being the volumetric damping coefficient.
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