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Abstract— This study proposes a control system in which the 
controller structure is divided in consideration of the unstable 
zeros of the controller. This controller can both inhibit a sine 
wave disturbance intended to produce unbalanced vibrations 
and stabilize the system with desired bearing stiffness. The 
effectiveness of the proposed method is verified through a 
simulation. 

INTRODUCTION 
One of the features of active magnetic bearings is the 

ability to control unbalances. Already, many studies have 
focused on unbalance compensation methods [1]. Because 
“generalized notch filters” [2] can be used within rigid body 
critical speeds, these are very effective methods. However, 
they require the measurement of the closed-loop sensitivity 
function after designing the stabilized controller. 

At the same time, many control methods have also been 
proposed to solve various control specifications, such as 

∞H control [3][4] and linear matrix inequality (LMI) [5]. 
However, because a determination of a weight function which 
satisfies simultaneously various control specification is 
difficult, more advanced techniques are required to design a 
good controller. To solve this problem, model bridge control 
(MBC), which is based on internal model control [6], is 
proposed [7][8]. MBC is a modification of the generalized 
stabilizer. It has a control structure in which adjustable models 
bridge over the gaps between the external signals and the 
desired outputs. MBC has been used to configure an 
unbalance control system for a magnetic bearing, and this was 
verified through a simulation [9]. The simulation results show 
that the proposed control method makes it possible to pass the 
rigid body critical speed safely, control housing vibrations, 
and avoid amplifier saturation. However, it is necessary to 
design a high supported stiffness controller for inhibiting a 
large overshoot of  displacement for levitating. This is because 
the zeros of the unbalanced disturbance compensator closer to 
the origin cause a large overshoot. 

This study proposes a controller structure that is divided in 
consideration of the unstable zeros of the controller. By this 
method, without changing the performance of the sine wave 
disturbance suppression, a response for levitating and good 
support desired rigidity are obtained. 

CONTROLLED OBJECT 
The configuration of a vertical-type rotor system supported 

by magnetic bearings is shown in Figure 1. The nomenclature 
used in this paper is shown in Table 1.  

A controlled object is assumed to be a one-degree-of-
freedom system under decentralized control. This system is 
unstable when a constant attractive force produced by a bias 
current is greater than the spring force of a shaft. The coil 
current is considered a control input and mass displacement, 
the output. The state equation is as given below. 

 

TABLE I.  PARAMETER DEFINITION 

 Parameter Value 
M Equivalent mass 1.47 kg 
F0 Constant attractive force 3.5 N 
X0 Air gap 2.0 mm 
I0 Bias current 0.35 A 
k Spring constant 1.28 kN/m 
dc Damping constant 0.016 μNs/m 
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Figure 3.  Separated-type feedback control system  

 

Figure 2.  Feedback control system  
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The transfer function of a controlled system is expressed 
as follows. 

( ) ( ) ( )( )βα +−
=−=

ss
kBAsICsG ggg  (3) 

where α  is an unstable pole and β , a stable pole. 

STABILIZING CONTROLLER, AND ITS STRUCTURE 

A. Basic-type controller 
A feedback control system using a controller )(sGc  is 

formed as shown in Figure 2. )(sy  is the output, ssr 1)( =  is 
a step reference input, and )(sd  is a sine wave disturbance 
expressed as follows.  

( ) ( )22 ωω += ssd   (4) 

A controller for stabilizing the system of Figure 2 is 
generally represented by the following internal model 
parameterization (IMP). 

( ) ( ) )(1
)(

sPsG
sPsG

c
c −

=   (5) 

Here, )(sP  is a free parameter that is expressed as follows. 

( ) ( )( )
( ) ( )3

2

2 11 s
dscsbsa

sk
sssP

ττ
βα

+
+++

+
+−

=  (6) 

τ  is the time constant of the closed loop system, and the 
response of this system is determined by its value. If its value 
is small, quick levitation response and high bearing stiffness 
can be obtained. Contrarily, if a larger value is set, slow 
levitation response and low bearing stiffness are obtained. The 
coefficients a, b, c and d are calculated by a simultaneous 
equation based on the following conditions of an internal 
stabilization (See APPENDIX). 

( ) α=
− ssPsG )(1   (7) 

( ) 0)(1
=

− ssPsG   (8) 

( ) jssPsG ω=
− )(1   (9) 

P(s) as calculated by the above method has zeros owing to a 
sine wave disturbance. If these zeros are close to the origin, 
they worsen a step response. Therefore, it had to be set to a 
small value of τ  for inhibiting a large overshoot of  
displacement levitating. This constraint causes that cannot be 
set only high bearing stiffness. 

B. Separated-type controller 
The structure of the controller )(sGc  obtained in the 

previous section can be changed to a distributed structure, as 
shown in Figure 3. P(s) for this structure is defined as follows: 

( ) ( ) ( )

( ) ( )( )
( )

( )
( )3

2

2

1

1

s
dscsbsasP

sk
sssP

sPsPsP

b

a

ba

τ

τ
βα

+
+++

=

+
+−

=

=

 (10) 

Pb(s) contains unstable zeros of )(sGc . Based on equation 
(10), the controller )(sGc  is divided into two elements. 

( ) ( ) ( )

( ) ( ) ( ) )(,
)(1

)( sPsG
sPsG

sPsG

sGsGsG

bb
c

a
a

bac

=
−

=

=
 (11) 

Thus, the step response can be improved without changing the 
disturbance suppression performance. 
 

SIMULATION RESULTS 
The controllers are designed to suppress a sine wave 

disturbance of 5Hz, and their control performance is verified 
through a simulation.  
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Figure 4.  Levitation responses (separated-type contrller) 

 

Figure 6.  Levitation responses (basic-type controller) 

 

Figure 5.  Responses of sine wave disturbance (τ = 0.05) 

Basic-type controllers were designed for two conditions—
a low bearing stiffness of τ = 0.05 and a high bearing stiffness 
of τ = 0.02. Figure 4 shows a comparison of the results for the 
levitation response. A large overshoot occurs if τ is large. This 
causes sustained vibrations between the touchdown bearing in 
the experiment.  

A separated-type controller is configured to separate the 
basic-type controller designed based on Equations 10 and 11. 
Figure 5 shows a comparison of the results for the levitation 
response. Regardless of the value of τ, a separated-type 
controller shows smooth levitation without overshoot. 

Figure 6 shows the verification results of disturbance 
suppression performance of each type of controller. The 
controllers are designed with τ = 0.05. A sine wave 
disturbance is input from 4.0 [s] at the place that has levitated 
stably. Both controllers suppress the disturbance with identical 
performance. 

CONCLUSION 
In this study, the effectiveness of the controller structure 

divided in consideration of the unstable zeros of the controller 
was shown. The future task is to experimentally verify the 
effectiveness of the proposed method in a two-degree-of-
freedom system. 
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APPENDIX: CONTROLLER DESIGN METHOD 
From Equations 5 and 6 

( )

5)1(

)(1
554453)310(2)210()5()1(

s

sPsG

ssscscsba
τ

τττττ

+
=

−

++−+−+−+− (Α1) 

Than a condition of Equation 8 

101 =∴=− aa   (A2) 
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From Equation 7, which is a condition for the unstable pole α  

( )

5)1(

)(1
554453)310(2)210()5(

τα
ααααα τττττ

α

+
=

−

++−+−+−

=

ccb

ssPsG
 

 (A3) 

For the above equation becomes zero 

05)10(

)10()5(
554433

22

=++−+

−+−

ατατατ

ατατ

d

cb
 

Thus 

4534232

2

510105 αταταταττ

αα

++++=

++ dcb
 (A4) 

Similarly, for an angular frequency of the agitation, 

( )

5)1(

)(1
554453)310(2)210()5(

j
jj

sPsG

jccb

js

τω
ωωωωω τττττ

ω

+
=

−

++−+−+−

=

 (A5) 

From the condition that Equation A5 becomes zero, the 
following equations are provided. 

05)10( 4422 =+−− ωτωτ c  (A6) 

0)10()5( 5533 =+−−− ωτωτωτ db  (A7) 

From Equations A6 

242 510 ωττ −=c   (A8) 

The following equation is obtained and rearranging the 
equation A7. 

45232 105 ωτωττω +−=− db  (A9) 

Substituting Equation A8 in Equation A4 

45224232 )(5105 αταωαταττα ++++=+ db  
  (A10) 

Subtracting Equation A9 from Equation A10. 

))((

)(5)(10)(
22225

22422322

αωαωτ

αωαταωταω

−+−

+++=+ d
  

)(510 22543 αωταττ −−+=∴d  (A11) 

Substituting equation A11 in equation A9 

{ }
4523

225432

105

)(510

ωτωττ

αωταττω

+−=

−−+−b
  

2252455 ωαταωττ ++=∴b  (A12) 
In the above, all coefficients of the free parameter are 
determined. The controller cG  is obtained as the following 
form in the end. 

( ) ( )

{ }55443322

32

5)10()10()5(
))()((

)(1
)(

sssdscsbk
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c
c

τττττ
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++++−
=

−
=
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The denominator becomes the following equation. 
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Rearranging Equation A13 using Equation A14, the following 
controller cG

 
is obtained. 

( )
{ }5)()(

))()((
224

32

+++

++++−
=

ατωτ
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sssk
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