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Abstract—The support parameters, the stiffness and damping
coefficients, of active magnetic bearings (AMBs) have direct
influence on the dynamic response and stability of a rotor bearing
system. The unbalance response method is a simple but effective
way to identify the AMB support parameters. In this paper, we
present experimental verification of this identification method.
We first briefly introduce the unbalance response method and the
error response surface approach to rectifying the identification
error induced by the rotor flexibility. The final AMB stiffness
and damping coefficients are determined as the sum of the
nominal values identified by the unbalance response method
and the identification errors derived from the error response
surfaces. We will then present the experimental verification of
this combined unbalance response and error response surface
identification method on a rotor AMB test rig. In order to verify
the identification method, the parameters thus identified based on
the experimental data are integrated with the rotor finite element
model to form the rotor-AMB model. The model unbalance
response is obtained through simulation and compared with ex-
perimentally measured unbalance response. The close agreement
between the model unbalance response and the experimentally
measured response demonstrates that the proposed method is
effective in identifying the AMB support parameters.

I. INTRODUCTION

Active magnetic bearings (AMBs) find a wide range of
applications in energy storage, machine tool operation, arti-
ficial heart pumps and hybrid vehicles [1], because of their
lubrication free and non-contact operation. The stiffness and
damping coefficients of a rotor AMB system have substantial
effect on the system dynamic response and stability, and many
methods have been reported on their determination. Humphris
et al. derived equivalent stiffness and damping coefficients
from the AMB system transfer function [2], Yu [3] and Hu
et al. [4] analyzed the theoretical AMB static and dynamic
characteristics, Wang and Jiang [5] proposed a method to
estimate the bearing stiffness using the control current ratio.
These methods are based on a simplified model and the support
parameters of AMBs are identified only through the theoretical
analysis, which leads to inaccurate results. In addition, it is
difficult to identify support parameters based on theoretical
analysis methods when complex AMB control algorithms are
employed.

Compared to the theoretical analysis approach, which re-
quires simplified model of the rotor AMB system, experimen-

tal identification approach is an easier but effective way to
identify the AMB stiffness and damping coefficients. Wang
[6] and Schweitzer et al. [7] confirmed that the AMB stiffness
and damping coefficients are closely related to the controller
frequency response, with the controller bandwidth having the
strongest impact. Yang et al. [8] used the AMB as an exciter
for the stiffness identification. Since the excitation force is
obtained through the electrical current conversion, magnetic
flux leakage causes the actual force to be inconsistent with
the theoretical value. Wu [9] and Wang and Gao [10] used
the external load method to identify the static stiffness, but
they did not consider the dynamic characteristics of magnetic
bearings. Zhou and Lin [11] used the hammer impact method
to estimate the stiffness and damping of a single degree of
freedom (SDOF) AMB system, and then verified the results
through the sine sweep frequency response. According to the
amplitude-frequency characteristic curve, the estimated system
stiffness is close to the value obtained by the hammer impact
method, but the study was only limited to an SDOF system.
Shen and Yu [12] used the multiple frequency excitation
approach, in combination with the least squares method, to
identify the AMB support parameters, but a rigid rotor motion
equation was used as the rotor model. The drawback for
these existing experimental identification approaches is that
they mostly do not consider rotor flexibility, which leads to
inconsistent results at different rotating speeds.

In summary, there are basically two main approaches to
the identification of the AMB support parameters. One is
based on the frequency characteristics of the control system,
which has been studied through theoretical analysis but lacks
experimental verification. The other one is to analyze response
to the excitation. The second approach is mostly based on a
rigid rotor motion and does not take the rotor flexibility into
consideration. Treating the unbalance force an excitation, Zhou
et al. [16] developed an unbalance response based method
to identify AMB support parameters, which takes the rotor
flexibility into consideration during the identification process.
The unbalance response based support parameter identification
method has already been widely used in mechanical bearings,
but few works have been documented for applying this method
to AMBs. Because the unbalance force is the simplest form
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of external excitation, it does not require additional devices,
which makes experimental studies easier to conduct [13]–[15].

In this paper, we present experimental verification of the
unbalance response based method that was developed in [16]
on a flexible rotor AMB test rig. Two sets of balancing weights
are attached to the rotor disks to obtain the unbalanced rotor
displacements, from which the nominal stiffness and damping
coefficients are derived. We then rectify the identification
error caused by the rotor flexibility with an error response
surface approach. The final parameters thus identified are
integrated with the rotor finite element model to form the
rotor-AMB model. The model unbalance response is obtained
through simulation and compared with experimentally mea-
sured unbalance response. The close agreement between the
model unbalance response and the experimentally measured
response demonstrates that the proposed method is effective
in identifying AMB support parameters.

The remainder of this paper is organized as follows. Section
II describes the experimental setup and the unbalance response
based method we are to verify. Section III presents the results.
Section IV draws a conclusion to the paper.

II. THE IDENTIFICATION METHOD

This section contains three subsections. Subsection II-A
describes the flexible rotor AMB test rig where the proposed
identification method is applied. The identification results are
also verified based on this test rig in Sec. III. Subsection II-B
introduces a rigid rotor model based identification method
to calculate the nominal values of the AMB stiffness and
damping coefficients from the measured unbalance response.
Subsection II-C adopts a finite element model of the rotor to
construct error response surfaces for rectifying the identifica-
tion errors induced by the rigid rotor modeling of the flexible
rotor.

A. Experimental Setup

Shown in Fig. 1 is the experiment setup that we use to
verify the identification method described in Section II. The
setup contains a five DOF rotor AMB test rig and two sets of
balancing weights that are added to the rotor disks. This test
rig was built to simulate an industrial high speed centrifugal
gas compressor and two radial AMBs (H and A) are located
on the driven (DE) and nondriven end (NDE) of the rotor. The
nominal bias current is around 3.8 A so the support AMBs’
load capacity is around 1336 N. Each AMB is equipped
with four Model 422 PWM amplifiers from Copley Controls
and each amplifier can generate up to 10 A current and 3.2
kW peak power output to provide the maximum required
force slew rate. The rotor movement is monitored by a 10
channel Kaman eddy current sensor system. For each AMB
control axis, there is one pair of sensor probes in a differential
arrangement to measure the rotor displacement in the direction
of the AMB control quadrants. To avoid damage when the
rotor drops, two auxiliary bearings are also mounted in the
casing with 10 mils clearance. The steel rotor has a length of
1.23 m and weighs around 44.9 kg. The first rigid body mode
is around 2500 RPM (41.67 Hz) and the first bending mode

is around 14,800 RPM (246.67 Hz). A 3.7 kW Colombo RS-
90/2 high speed motor with variable frequency drive (VFD) is
used to move the rotor up to 18,000 RPM.

There are two discs attached to the rotor and they serve
as the balance planes. For disc 1, the distance between the
mounting holes and center is 0.11265 m while for disc
2, it is 0.03799 m. The first set of balancing weights are
m1 = 1.262 g and m2 = 3.926 g. The second set are
m1 = 1.415 g and m2 = 4.103 g. We are going to identify
the supporting stiffness and damping coefficients of the two
magnetic bearings A and H.

The digital control system is based on the Innovative
Integration M6713 PCI board and a TI C6713B 32-bit floating
point digital signal processing (DSP) chip is used for the
implementation of the digital control algorithm with an up-
dating frequency around 12 kHz. Besides the DSP, a Labview
data acquisition console is also added to interface with the
computer for additional data logging. The data logging func-
tion is written in Labview 2010 and the sensor measurements
and control outputs of all four control axes are saved at
6.4 KHz, which are much higher than the logging function
provided by the DSP graphic user interface. They are also
converted from time domain response to frequency domain
response using the FFT block provided by Labview so it is
possible to precisely identify at which frequency the maximum
vibration happens. The rotating speed is also saved at 6.4 KHz,
so these information can be used to identify the unbalance
weight and estimate the stiffness and damping coefficients.
Identification of AMB support parameters requires the steady
state rotor displacement amplitude and phase information at
AMB locations. The displacement amplitudes are obtained
through eddy current sensors and the phase information is
obtained through fiber optic sensors.

Figure 1: A Five DOF rotor AMB test rig with balancing
weights m1 and m2.

B. Unbalance Response Based Identification
Shown in Fig. 2 is the schematic of the rotor AMB test rig

we are to verify the unbalance response based identification
method on.
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Figure 2: The schematic of the rotor AMB test rig.

In the Fig 2, l1 and l2 respectively represent the distances
from the AMBs at both ends of the rotor to the rotor centroid,
l3 and l4 are respectively the distances from disk 1 and disk
2 to the rotor centroid, m1 and m2 are the balancing weights
attached respectively to the left and right disks, r1 and r2 are
the distances between the disk centers and locations of the
balancing weights.

We will model the AMBs with a combination of springs and
dampers. The effects of unbalance force on the rotor center
of mass and the effect of AMB force are equivalent to each
other. The following equations are derived respectively from
the balance of force and the balance of torque,

mẍc = fux1 + fux2 + fx1 + fx2, (1)
mÿc = fuy1 + fuy2 + fy1 + fy2, (2)

Itθ̈y = −fux1l3 + fux2l4 − fx1l1 + fx2l2 − IpΩθ̇x, (3)

Itθ̈x = −fuy1l3 + fuy2l4 − fy1l1 + fy2l2 + IpΩθ̇y, (4)

where xc and yc are the movements of the rotor center of
mass in the x and y directions, respectively, m is the rotor
mass, fux1, fux2, fuy1 and fuy2 are the unbalance forces
generated by the balancing weights, fx1, fx2, fy1 and fy2 are
the supporting forces from the AMBs, θx and θy are the rotor
tilt angles in the x and y axes, It and Ip are respectively the
transverse and polar moments of inertias, and Ω is the rotor
rotating speed.

The AMB supporting forces can be expressed as

fx1 = − (kx1(Ω)x1 + cx1(Ω)ẋ1) ,

fy1 = − (ky1(Ω)y1 + cy1(Ω)ẏ1) ,

fx2 = − (kx2(Ω)x2 + cx2(Ω)ẋ2) ,

fy2 = − (ky2(Ω)y2 + cy2(Ω)ẏ2) ,

where kxi(Ω), cxi(Ω), kyi(Ω) and cyi(Ω), i = 1, 2, are the
stiffness and damping coefficients of AMBs in the x and y
directions, with i = 1 denoting the AMB at the left end and
i = 2 denoting the AMB at the right end. For notational
brevity, in what follows we will often drop the dependence
on Ω of these coefficients, and simply write kxi, cxi, kyi and
cyi.

Based on Eqs. (1)-(4), the motion equation of the rotor can
be further derived in the following complex form [16]

Mq̈ + (C + ΩG)q̇ +Kq = F0e
jΩt, (5)

where M is the rotor mass matrix, C is the support damping
matrix, G is the gyroscopic effect matrix, K is the support

stiffness matrix, F0e
jΩt is the rotor unbalance force vector,

and q = q0e
jΩt are the rotor displacements vector with q0 =

[x1 x2 y1 y2]T. Matrices M , K, G and C are defined as
follows,

M =
1

L


ml2 ml1 0 0

−It It 0 0

0 0 ml2 ml1

0 0 −It It

 ,

K =


kx1 kx2 0 0

−kx1l1 kx2l2 0 0

0 0 ky1 ky2

0 0 −ky1l1 ky2l2

 ,

G =
1

L


0 0 0 0

0 0 −Ip Ip

0 0 0 0

Ip −Ip 0 0

 ,

C =


cx1 cx2 0 0

−cx1l1 cx2l2 0 0

0 0 cy1 cy2

0 0 −cy1l1 cy2l2

 ,
where L is the rotor span.

The total unbalance excitation vector F0 is given by

F0 =


f1 + f2

−f1l3 + f2l4

−j(f1 + f2)

−j(f1l3 − f2l4)

 , (6)

where

f1 = m1r1Ω2e−jφ1 ,

f2 = m2r2Ω2e−jφ2 ,

with φ1 and φ2 being the phase angles for the two balancing
weights.

Substitution of q = q0e
jΩt into (5) results in

jΩCq0 +Kq0 = F0 + (Ω2M − jΩ2G)q0. (7)

The values of the AMB support parameters can be solved
from expanded Eq. (7), which can be reorganized into the
following two equations,

QxPx = Fx, (8)
QyPy = Fy, (9)

where

Qx =

[
x1 x2

−l1x1 l2x2

]
,

Px =

[
kx1 + jΩcx1

kx2 + jΩcx2

]
,
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Qy =

[
y1 y2

−l1y1 l2y2

]
,

Py =

[
ky1 + jΩcy1

ky2 + jΩcy2

]
,

Fx =

[
f1 + f2

−f1l3 + f2l4

]

+
Ω2

L

[
ml2 ml1 0 0

−It It −jIp jIp

]
x1

x2

y1

y2

 ,

Fy =

[
−j(f1 + f2)

−j(f1l3 − f2l4)

]

+
Ω2

L

[
0 0 ml2 ml1

jIp −jIp −It It

]
x1

x2

y1

y2

 .
Then we can solve Px and Py from Eqs. (8) and (9) to get

the nominal values of the support parameters kxi, cxi, kyi and
cyi, i = 1, 2,

Px = Q−1
x Fx, Py = Q−1

y Fy.

We denote the nominal values as k0
xi(Ω), c0xi(Ω), k0

yi(Ω)
and c0yi(Ω), i = 1, 2.

C. Parameter Rectification Based on Response Surface

In the unbalance response identification procedure described
in the previous subsection, the rigid rotor model is adopted,
which is expected to result in substantial identification errors.
We will adopt the response surface approach to improve the
precision. The response surface approach relies on the finite
element model of the flexible rotor.

Because the coupling between the x and y axes of a
radial AMB is small, we will establish an error response
surface based on four support parameters in the x and y
axes independently. Four control quadrants are assigned to
each AMB and each control channel covers the two opposing
quadrants. The top two quadrants both have 45◦ offset from
the vertical so the two control channels can evenly carry the
rotor weight, which makes the dynamics for both x and y axes
almost identical. Therefore, the error response surfaces in the
x and y axes can be established similarly. The error response
surfaces in the x axes are formulated as follows,

∆kx1 = F1(k0
x1, k

0
x2, c

0
x1, c

0
x2),

∆kx2 = F2(k0
x1, k

0
x2, c

0
x1, c

0
x2),

∆cx1 = F3(k0
x1, k

0
x2, c

0
x1, c

0
x2),

∆cx2 = F4(k0
x1, k

0
x2, c

0
x1, c

0
x2),

where Fi(k0
x1, k

0
x2, c

0
x1, c

0
x2), i = 1, 2, 3, 4, are polynomials in

terms of the four nominal AMB support parameters k0
x1, k0

x2,

c0x1 and c0x2, as identified by the unbalance response method
from the experimental measurements.

We approximate these error response surfaces with polyno-
mials of fifth degree in the normalized nominal stiffness and
damping coefficients k̃x1, k̃x2, c̃x1, c̃x2. Take ∆kx1 at speed
Ω as an example, we have

∆kx1 = β0(Ω) + β1(Ω)k̃x1 + β2(Ω)k̃x2 + β3(Ω)c̃x1

+ β4(Ω)c̃x2 + · · · + β17(Ω)(k̃x1)5 + β18(Ω)(k̃x2)5

+ β19(Ω)(c̃x1)5 + β20(Ω)(c̃x2)5 + β21(Ω)k̃x1k̃x2

+ β22(Ω)k̃x1c̃x1 + · · · + β26(Ω)c̃x1c̃x2.

The procedure for determining the coefficients βi(Ω), i =
0, 1, · · · , 26, is described in detail in [16] and is briefly
summarized in Fig. 3.

Regenerate 
test points

 

Satisfy 
R2>0.95

Not 
satisfy 

Find the computed stiffness and damping 

coefficients i

xk 1 , i

xk 2 , i

xc 1and i

xc 2 based on the 

unbalance response of the finite element 

model integrated with the same set of i

xk 1
ˆ , 

i

xk 2
ˆ , i

xc 1ˆ and i

xc 2ˆ  

 

Generate 200 test points for each 1xk , 2xk , 

1xc , 2xc as i

xk 1
ˆ , i

xk 2
ˆ , i

xc 1ˆ , i

xc 2ˆ  based on  

the D-optimality method in Matlab 

At each speed, the simulated identification 

errors ,,ˆ~
111 i

x

i

x

i

x kkk   i

x

i

x

i

x ccc 222 ˆ~  , 

i=1, 2, …, 200. Find the normalized values 
i

xk 1
~ , i

xk 2
~ , i

xc 1
~  and i

xc 2
~  for the computed 

support parameters i

xk 1 , i

xk 2 , i

xc 1 and i

xc 2  

 

 
Based on the simulated identification errors 

and the normalized stiffness and damping 

coefficients, the error response surfaces of 

the approximated identification errors 1xk , 

2xk , 1xc and 2xc  can be formulated using 

fifth order polynomials, each with 27 

coefficients to be identified  

 

Use least squares method to find the  

estimated 26210 ,,,,   for the 

polynomial which represent the error 

response surface for 1xk and other 

identification errors, correspondingly 

 

Verify the accuracy of the established 

error response surfaces using the 2R
 

criterion 
 

Use the normalized value 0
1

~
xk , 0

2
~

xk , 
0
1

~
xc , 0

2
~

xc  of the nominal stiffness  

and damping coefficients 0
1xk , 0

2xk ,  
0
1xc , 0

2xc to find the final 

identification errors xik and xic ,  
i=1,2 

 

Repeat for different operating speed Ω 

Figure 3: The procedure for determining the coefficients of
the error response surfaces.

With these coefficients determined, the identification error
can be calculated as

∆kx1(Ω) = β0(Ω) + β1(Ω)k̃0
x1(Ω) + β2(Ω)k̃0

x2(Ω)

+β3(Ω)c̃0x1(Ω) + β4(Ω)c̃0x2(Ω) + · · ·
+β17(Ω)(k̃0

x1(Ω))5 + β18(Ω)(k̃0
x2(Ω))5

+β19(Ω)(c̃0x1(Ω))5 + β20(Ω)(c̃0x2(Ω))5

+β21(Ω)k̃0
x1(Ω)k̃0

x2(Ω) + · · ·
+β26(Ω)c̃0x1(Ω)c̃0x2(Ω),

where k̃0
x1(Ω), k̃0

x2(Ω), c̃0x1(Ω), c̃0x2(Ω) are normalized values
of k0

x1(Ω), k0
x2(Ω), c0x1(Ω) and c0x2(Ω).

The other error response surfaces on the x axis, ∆kx2(Ω),
∆cx1(Ω) and ∆cx2(Ω), can be formulated and obtained in the
same procedure.

The final identified AMB stiffness and damping coefficients
on the x axis can be obtained as,

kx1(Ω) = k0
x1(Ω) + ∆kx1(Ω),
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kx2(Ω) = k0
x2(Ω) + ∆kx2(Ω),

cx1(Ω) = c0x1(Ω) + ∆cx1(Ω),

cx2(Ω) = c0x2(Ω) + ∆cx2(Ω).

III. EXPERIMENTAL VERIFICATION

The experimental identification process for the stiffness and
damping coefficients is summarized in Fig. 4.

Start AMB test rig

Set initial speed

Collect position sensor 
reading under current 

speed

Reach maximum test 
speed 

Raw data filtering

 Amplitude/phase 
extraction using Matlab

Use unbalance response 
method to identify AMB 

stiffness and damping

Compensate stiffness and 
damping coefficients using 

error response surface

Stiffness and damping 
verification

Test 
terminates

Speed increases 
at 5HZ

no

yes

Figure 4: Experimental identification process.

A. Identification Results
The data logging starts from 600 rpm to 6000 rpm. The

rotor displacements and rotating speed are saved every 300
rpm for around 10 seconds. The measured displacements
go through unbalance signal filtering using Kaiser bandpass
filters and zero phase digital filters to extract the steady state
amplitude and phase information. Based on the experimental
measurements, the nominal values of the stiffness and damping
coefficients can be identified using the unbalance response
method described in Subsection II-B.

To construct the error response surfaces as described in
Subsection II-C, we create a finite element model of the test
rig in MSC.Patran. The stiffness and damping coefficients
of AMBs are closely related to the feedback control gains.
Generally, the control gains for each control channel are
slightly different, so the stiffness and damping coefficients for
each axis are different. Therefore, we used different test points
in constructing the error response surfaces for the support
parameters. Two virtual balancing weights are attached to
the model discs and then we analyze the unbalance response
through the finite element model from 600 rpm to 6000 rpm
with an interval of 300 rpm. Based on the rectification method
proposed in Subsection II-C, we can develop the error response
surfaces for different operating speeds.

The identified stiffness and damping coefficients for the two
sets of balancing weights are shown in Figs. 5 and 6. It is
observed that the AMB stiffness coefficients on both axes
increase with the operating speed because the frequency of
the unbalance force is directly related to the operating speed.
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Figure 5: Identified stiffness and damping coefficients for Set
1 of balancing weights. The upper two plots: kx and cx; The

lower two plots: ky and cy .
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Figure 6: Identified stiffness and damping coefficients for Set
2 of balancing weights. The upper two plots: kx and cx; The

lower two plots: ky and cy .

B. Verification of the Identification Results

To verify the accuracy of the identification results, we
integrate identified stiffness and damping coefficients with the
finite element model of the rotor to form a full model of the
rotor-AMB test rig. Based on this model, we obtain the model
unbalance response and compare them with the experimental
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measurements. The comparison results are shown in Figs. 7
and 8.
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Figure 7: Comparison of displacements between experiments
and simulation under Set 1 of balancing weights. The upper

two plots: x1 and x2; The lower two plots: y1 and y2.
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Figure 8: Comparison of displacements between experiments
and simulation under Set 2 of balancing weights. The upper

two plots: x1 and x2; The lower two plots: y1 and y2.

It can be observed that the unbalance response from the
finite element model closely agrees with the experimental
measurements at speeds ranging from 600 rpm to 6000 rpm.

This verifies the effectiveness of the identification method.

IV. CONCLUSIONS

This paper presented the experimental verification of an
unbalance response based identification method we recently
proposed to identify AMB stiffness and damping coefficients.
Considering the rotor flexibility, the final AMB support pa-
rameters are determined as the sum of the nominal values cal-
culated from the experimental unbalance response of a flexible
rotor AMB test rig and the identification errors derived from
the error response surfaces. The identified support parameters
are combined with the finite element model of the test rig
to generate unbalance response and they are compared with
experimental measurements. Their close agreements indicate
that the proposed method is effective in identifying the AMB
stiffness and damping coefficients.
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