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Abstract— The aim of this research is to ensure stable operation 
at a nominal rotation speed (above the first critical speed) of a 
flexible rotor levitated with active magnetic bearings (AMBs) 
and to guarantee good performance of the rotor/AMB system. 
Initially, minimizing the ITAE performance index, PID control 
system is designed to stabilize the rotor. The obtained transfer 
function is adopted as a compensator to shape the singular 
values of the nominal plant. By applying the Glover-McFarlane 
control method, a robust controller which includes coprime 
factor uncertainties is designed. The results show that the AMB 
system satisfies Zone A specifications defined by the ISO 14839 
standard for newly commissioned machines with magnetic 
bearings. 

I. INTRODUCTION 

Flexible rotors supported by active magnetic bearings 
(AMBs) are characterized by multiple lightly damped bending 
modes below the operating speed or within the controller 
bandwidth. Consequently, control of flexible rotors presents a 
challenge since linear design approaches are inherently only 
approximations of nonlinear dynamics [1]. Therefore, since 
PID control laws largely ignore model uncertainty and the 
coupled dynamics, they cannot guarantee robust stability and 
performance of rotor/AMB systems [2]. However, modern 
robust and optimal control theories provide a systematic 
method to optimize stability and performance of rotor/AMB 
systems [3].  

Regarding the H∞ robust method, two basic approaches 
can be distinguished, an approach based on the loop shaping 
and an approach based on the signals. Glover-McFarlane H∞ 
method [4] is an open loop shaping method which has found 
its application in the field of AMBs as well [5, 6]. The main 
idea behind the loop-shaping in the open loop is that the 
singular values of the closed loop transfer function matrices 
can be determined directly from the singular values of the 
open loop system.  

This paper focuses on the robust controller design for a 
flexible rotor/AMB system using the procedure as presented 
by Glover and McFarlane. The design procedure combines the 
loop shaping techniques from classical control with H∞ 
synthesis so as to optimize the robustness against coprime 
factor uncertainty. In the first step, PID controller is designed 
to stabilize the rotor. In the second step, the singular values of 
the nominal plant are shaped by implementing the obtained 
PID controller model as a pre-compensator and the robust 
controller is designed by applying the Glover-McFarlane 
control method. 

II. MATHEMATICAL MODEL 

Fig. 1 presents the considered rotor/AMB system 
configuration. It consists of the flexible rotor levitated by two 
radial AMBs with non-collocation. The mass of each AMB 
rotor part is 8 kg. The length and the diameter of the shaft are 
1.1 m and 0.025 m, respectively. Both AMBs operate with 0.3 
mm radial air gap. In addition, three discs of the same 
dimensions (0.22 m in diameter and 0.05 m wide) are mounted 
on the shaft. 

 

 
Figure 1.  Flexible rotor/AMB system configuration, with three discs D1, D2 
and D3 

By using the data from the finite element analysis, a 
structural mathematical model of the flexible rotor/AMB 
system in the modal coordinates can be constructed [7]. A 
nominal model G is defined as a state-space model described 
by the matrices A, B, C and D, as follows: 
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where ωi and ζi are the natural frequency and the modal 
damping ratio of the i-th vibration mode. Furthermore, Φ is 
the modal matrix of the mass normalized eigenvectors, Ks and 
Ki are 4×4 diagonal matrices of the force-displacement 
coefficients ks and the force-current coefficients ki, and TS is 
the Boolean matrix transforming the displacement outputs at 
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the corresponding degrees of freedom. The obtained natural 
frequencies of the flexible rotor model are: ω1 = 266 rad/s, ω2 
= 729 rad/s and ω3 = 1346 rad/s. The corresponding modal 
damping is 0.02, 0.01 and 0.005, respectively. In order to 
show rotor behavior at the AMB locations, the mode shapes 
(1st, 2nd and 3rd) of the system are shown in Fig 2. 
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Figure 2.  The natural mode shapes (1st, 2nd, 3rd) of the rotor/AMB system 

The power amplifiers used to drive the actuator coils are 
modeled as a second order filter, with the cut-off frequency 
famp = 700 Hz and the damping ratio ζamp = 0.85. The position 
sensors are modeled as a simple constant Ksens = 8000 V/m. 
Moreover, the total phase delay due to unmodeled dynamics 
of the sensors and other electronic devices, including sampling 
time of the digital controller is modeled as a total time delay 
of 1.3 ms using the Padé approximation of the first order.  

Finally, Figs. 3 and 4 show frequency response plots of the 
AMB A and AMB B from power amplifier inputs to position 
sensor outputs in y-axis. 
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Figure 3.  Frequency response plot of AMB A in y-axis  

 

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

-180

0

180

360

P
ha

se
 (

de
g)

Frequency  (rad/s)  
Figure 4.  Frequency response plot of AMB B in y-axis 

In Fig. 3 (at the 2nd bending mode of AMB A) and in Fig. 
4 (at the 3rd bending mode of AMB B) it can be noticed that 
the pole appears before the corresponding zero. This indicates 
that the applied force at the near resonant rotor speeds would 
be 180˚ out of phase with respect to the measured 
displacement and special attention should then be paid to the 
controller design. Such observations are in accordance with 
the modal nodes position (Fig. 2). 

III. CONTROL 

A. PID control and gain optimization 

A practical PID controller is characterized by the transfer 
function: 

 int f
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where Kp is the proportional gain, Kint is the integral gain, Kd is 
the derivative gain and Nf is the filter coefficient. In order to 
define the set of parameters (Kp, Kint, Kd, Nf) the closed loop 
system structure of the system presented in Fig. 5 is adopted 
for controller tuning.  

 

Figure 5.  System structure adopted for PID controller tuning 

Output response y(t) of the system is compared with the 
desired response r(t) and the resulting error e(t) = r(t) − y(t) is 
minimized through an optimization performance criterion to 
determine the optimal PID gains. Here, the minimization of 
the integral of time multiplied by the absolute value of error 
(ITAE) is adopted, which is defined as: 
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where T is the time of integration and m = 4 is the total number 
of control axes (two per one AMB), i.e. PID controllers.  

The search of the PID controller design may be stated as a 
constrained multivariable optimization problem defined as: 

 
( )

p int d f

subject to  0  where

 , , , 

x
min J x x ,

x K K K N

>

 =  
 (5) 

For the minimization of the performance index (4), with 
the constraints defined in (5), built-in function fmincon of the 
Matlab Optimization Toolbox is used by applying the interior-
point algorithm. 

B. Glover–McFarlane H∞ loop-shaping design procedure 

The loop shaping procedure includes two steps. In the first 
step, the nominal model G, given in the form of its left 
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coprime factorization is shaped using the pre-compensator 
matrix W1 and the post-compensator matrix W2 (Fig. 6), so as 
to obtain the shaped plant: 

 2 1=sG W GW . (6) 

In the second step, robust stabilization of the shaped plant 
with respect of the coprime factor uncertainties is performed 
by synthesizing a stabilizing controller Ks [8]. The final 
controller can be then constructed by combining Ks with W1 
and W2, such that  

 1 s 2=K W K W . (7) 

An important advantage of the presented method is that it 
does not require explicit definition of uncertainties. 
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K s
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Figure 6.  Shaped model Gs with controller Ks 

C. Compensator selection 

The diagonal elements of W1 and W2 are selected so as to 
provide the desired shape of the singular values of the open-
loop frequency response. However, in many practical 
applications, including AMBs, systems are unstable and can 
possess more than one gain crossover frequency. In such 
cases, the selection of the transfer functions for the design of 
the open loop process becomes difficult.  

In this paper it is shown that W1 can be efficiently selected 
as the following diagonal transfer function matrix: 
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where Gpid is the PID controller transfer function defined in 
(3) and Gnotch2 and Gnotch3 are the notch filters related to the 2nd 
and the 3rd bending modes defined as: 
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The corresponding central frequencies of the notch filters are 
ωnotch2 and ωnotch3 and the corresponding damping ratios are 
ζnotch2 and ζnotch3. Controller parameters (Kp, Kint, Kd, Nf) are 
obtained by minimization of ITAE performance index (4).  

Since in the observed AMB system there is no difference 
between importance of the outputs, W2 is selected as 4×4 unit 
diagonal matrix. 

 

IV. SIMULATION RESULTS AND CONCLUSION 

This chapter presents an analysis of the closed loop 
sensitivity functions of the rotor/AMB system, referring to the 
ISO 14839-3 standard [9]. From the measured sensitivity 
function S(jω) of each control axis (i = 1, …, m) in the frequency 
domain, the index to be evaluated is obtained from the 
relationship: 

 ( )max max  0 2
i

S max max S j , fω ω π = ≤ ≤
 

, (10) 

where fmax is the maximum frequency in the observed 
frequency range. Equation (10) generally states that the overall 
system rating is determined as the worst rating of any of the 
transfer functions individually measured for all four control 
axes. 

The Glover–McFarlane H∞ loop-shaping controller design 
procedure was carried out for the rotational speed Ω = 30 Hz 
(subcritical speed). Figs. 7 – 14 show plots of output sensitivity 
of the rotor/AMB system for the y-axis of AMB A and y-axis 
of AMB B for both PID and robust control methods. The 
magnitudes are measured at standstill (Ω = 0 rad/s), at Ω = 30 
Hz (188.5 rad/s), at Ω = 50 Hz (314.2 rad/s) and at Ω = 60 Hz 
(377 rad/s). The presented results are obtained with the 
following parameters: Kp = 0.6393, Kint = 6.271, Kd = 0.004, 
Nf = 80000, ωnotch2 = 729 rad/s, ωnotch3 = 1346 rad/s and ζnotch2 
= ζnotch3 = 0.15. 

Since the output sensitivity function provides a means of 
quantifying the disturbance rejection of the closed loop 
system, it can be concluded that the AMB system controlled 
by the proposed algorithm (PID + Glover-Mcfarlane) provides 
better disturbance rejection property than the system 
controlled solely by PID. Moreover, peak sensitivity lower 
than 3 (in absolute terms) satisfies Zone A specifications for 
newly commissioned machines with magnetic bearings 
defined by ISO 14839-3 and, therefore, indicates very good 
stability margin (as in Figs. 7 – 11). Zone B (peak sensitivity 
from range 3 – 4) is normally considered acceptable for 
unrestricted long-term operation (as in Figs. 12 and 13). 
However, maximal magnitude of the output sensitivity for 
AMB B at Ω = 60 Hz (as in Fig. 14) is equal to 5.38, 
indicating very poor stability margin (Zone D). This peak 
corresponds to excitation of the 2nd bending mode of the rotor 
which introduces non-collocation into the system (pole before 
zero at the 2nd bending mode of AMB A, Fig. 3).  
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Figure 7.  Output sensitivity function of the AMB A (Ω = 0 rad/s); PID(–. ), 
PID+Glover-McFarlane (––) 
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Figure 8.  Output sensitivity function of the AMB B (Ω = 0 rad/s); PID(–. ), 
PID+Glover-McFarlane (––) 
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Figure 9.  Output sensitivity function of the AMB A (Ω = 188.5 rad/s); 
PID(–. ), PID+Glover-McFarlane (––) 
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Figure 10.  Output sensitivity function of the AMB B (Ω = 188.5 rad/s); 
PID(–. ), PID+Glover-McFarlane (––) 
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Figure 11.  Output sensitivity function of the AMB A (Ω = 314.2 rad/s); 
PID(–. ), PID+Glover-McFarlane (––) 
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Figure 12.  Output sensitivity function of the AMB B (Ω = 314.2 rad/s); 
PID(–. ), PID+Glover-McFarlane (––) 
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Figure 13.  Output sensitivity function of the AMB A (Ω = 377 rad/s);     
PID(–. ), PID+Glover-McFarlane (––) 
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Figure 14.  Output sensitivity function of the AMB B (Ω = 377 rad/s);    
PID(–. ), PID+Glover-McFarlane (––) 

In conclusion, the proposed procedure does not satisfy the 
ISO standard in the entire frequency range if the non-
collocation problem exists. However, with no collocation 
problems it provides stable operation of the flexible rotor/ 
AMB system above the first critical speed.  
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