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Abstract—Synchronous vibration caused by rotor imbalance is
an obvious vibration problem in rotating machinery. Since active
magnetic bearing has been proved to be an effective approach
to solve this problem, many researchers have proposed various
methods to reduce synchronous vibration and those methods can
be classified into two categories: model-based method and model-
free method. In the paper, we use a model-free method, iterative
learning control (ILC) and a model-based adaptive forced bal-
ancing methods (MBAFB) to attenuate synchronous vibration
respectively and then compare their performances in several
aspects. The results of this paper can provide references for the
users to choose an appropriate unbalance control algorithm.

I. INTRODUCTION

Compared with traditional bearings, magnetic bearings pos-
sess several advantages, such as, contact free, no lubrication,
and the unique ability of active control. Those advantages pro-
mote the developments and applications of magnetic bearings.
At present, they are widely used in vacuum and clean room
technology, turbo machinery and centrifuges [1].

Rotor imbalance results from materials or manufacture
errors is inevitable. For a rotating system, the imbalance may
generate a centrifugal force which would cause undesirable
noise, rotor run-out and housing vibration. More specially,
the centrifugal force is proportional to the square of rotating
speed. Therefore, when the rotor operates at high speed, the
synchronous vibration caused by rotor imbalance is obvious
and even has an effect on the stability of the system. Many
mechanical measures have been presented and applied to
balancing the rotor. However, those measures are always costly
and time consuming. Take dynamic balancing for example,
rotor imbalance is reduced by adding or removing a small
mass from the rotor. During the balancing process, the system
need to start first then stop for several times and the rotor need
to be re-balanced when the operation speed changes.

Since the active magnetic bearing has been proved to be
an effective approach to solve this problem, many researchers
have proposed several effective control methods to reduce
synchronous vibration and those methods can be classified into
two categories: model-based method and model-free method
[2], [3], [4], [5]. In the paper, first of all, we build the model
of the whole system. It is worth mentioning that a flexible
rotor model is built using lumped mass method which promote

the accuracy of objective system model. Then, synchronous
vibration control of the system is achieved using a model-free
method and a model-based method respectively. Finally, we
compare the performances of those unbalance control methods.

II. MODEL OF THE OBJECTIVE SYSTEM

An AMB system is proposed of several components: rotor,
magnetic bearings, sensors, controller, amplifier. In this sec-
tion, we build the model of each components and the details
are described below

A. Model of the Flexible Rotor

It is well-known that motion of the rotor can be described
by following equation:

MẌ + ΩGẊ +KX = F (1)

Where M , G, K are respectively mass matrix, gyroscopic
matrix, stiffness matrix. Here, X is the rotor displacements
vector, Ω is rotating speed and F is the magnetic bearing forces

vector. If we choose Z =
[
XT ẊT

]T
as state variables,

then the rotor model can be rewritten in the state space form:

Ż =

[
0 I

−M−1K −ΩM−1G

]
Z +

[
0

I

]
F

Y =
[

0 I
]
Z

(2)

Where, Y is the output vector and I is identity matrix.
Since, magnetic bearings are widely applied in high speed

rotating machinery. The rotor, in generally, operates beyond
the rigid modes and several flexible modes. In this case, the
simple rigid model of the rotor is ill-suited and a flexible rotor
model is required. In the paper, parameters of rotor model is
obtained and rotor model is established using lumped mass
method. The basic principle of this method is to simplify rotor
as several discs with mass and the moment of inertia lumped
and massless elastic rods and the details about this method
can be seen in literatures [6], [7]. To obtain a flexible rotor
model, several flexible modes are maintained during the model
reduction process.
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Figure 1. Rotor runout curve at axis X1 without unbalance control at
5000rpm.

B. Models of Other Parts

The models of other parts of the objective system is given
below:

Sensors and amplifiers are simplified into proportional com-
ponents and represented by KS , KA respectively. Magnetic
bearings are described by the classical linear form as follow-
ing:

FM = −KXX +KIIC (3)

Where FM is magnetic bearing forces matrix, KX is the
force-displacement factor matrix, and KI is the force-current
factor matrix. Here, IC is control current vector. As we all
know that, the open loop of magnetic bearing system is
inherently unstable. Therefore, a PID controller is introduced
as negative feedback control to realize the stable of the system.

III. UNBALANCE ANALYSIS AND COMPENSATION

A. Unbalance Analysis

When rotor rotates at speed ω, there will be a centrifugal
force FC results from the misalignment between the mass
center and the geometric center of the rotor. Assume that the
rotor imbalance is m and the distance between the mass center
and the geometric center of the rotor is e. Then this centrifugal
force can be described as:

FC = meω2 sin(ωt+ ϕ) (4)

However, this periodical centrifugal force acting on the rotor
could induce sinusoidal disturbance to the displacement of
the rotor if only the PID controller applied. The simulation
result in Fig.1 also confirms this phenomenon. The sinusoidal
disturbance can be written as:

d(t) = αd(t) sin(ωt) + βd(t) cos(ωt) (5)

Here, αd(t), βd(t) are the fourier coefficients of the sinusoidal
disturbance.

In generally, the sinusoidal disturbance is the mainly part of
rotor vibration. It obstructs the applications of AMBs in high-
lever rotating accuracy conditions. In these cases, unbalance

Figure 2. Block diagram of closed-loop control AMB system with unbalance
control.

compensation techniques can be applied to reduce the rotor
runout. Among various of methods, open loop feed-forward
control is most widely used. These methods add additional
control signals to the controller outputs according to the
displacements of the rotor. The structure of AMB system with
unbalance compensation is illustrated in Fig.2. In this paper,
the additional control signals are generated based on ILC and
MBAFB respectively.

B. Iteration learning control
The original idea of iterative learning control was first raised

by Uchiyama in 1978 [8] and further proposed by Arimoto
and others. Iterative learning control is a model-free system
synthesis method which yields the control signal uk+1 for
the next cycle using the current control signal uk and an
error correction item, the product of learning gain and ek, the
difference between desired output yd and the current output
yk, or the derivative of ek. There are a series of ILC control
methods, P-type, D-type, PID-type and so on. In the paper,
we will use P-type ILC law which yields uk+1 by adding uk
and error correction item, the product of learning gain and
ek only. Therefore, this method has significant advantages:
physically easy to implement and insensitive to measurement
noises. The open loop P-style learning law in time domain can
be described as:

uk+1(n) = uk(n) + Lek(n)

n ∈ 0, 1, · · · , nf − 1
(6)

Where, nf = 2π/(Tsω), Ts is the sample time. uk(n) is the
current control input, and uk+1(n) is the control input of next
cycle at sample point n. Here, L is the iterative learning gain
and convergence condition can be found in [9]. The error
defined as:

ek(n) = yd(n)− yk(n) (7)

Here, yd(n) is the desired output.

C. Model Based Adaptive Forced Balancing
The simplified AMB system with MBAFB control is illus-

trated in Fig.3. The block of plant denotes the close loop of
AMB system. And, it’s transfer function G(s) can be derived
according to Fig.2. Here, we assume that G(jω) = Aejθ and
the synchronous compensation signal has the following time
domain representation:

r(t) = αr(t) sin(ωt) + βr(t) cos(ωt) (8)
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Figure 3. Block diagram of closed-loop AMB system with AFB.

Then, the output of the system can be derived as:

y(t) = αd(t) sin(ωt) + βd(t) cos(ωt)

+Aαr(t) sin(ωt+ θ) +Aβr(t) cos(ωt+ θ)
(9)

As shown in Fig.3, the MBAFB control algorithm consists
of three parts: synchronous energy calculation (SBC), fourier
coefficient computer (FCC) and signal generater (SG) [10].
In the first part, the so-called synchronous energy signals are
calculated according to the system output signal y(t). In order
to obtain n1(t), n2(t), y(t) is demodulated and then filtered
using low pass filter to filter out the non-DC components. With
the assumption that high frequency components are canceled
out, n1(t), n2(t) can be derived and then be used to generate
the fourier coefficients of the synchronous compensation signal
in the FCC part. FCC plays an important role in the adaptive
algorithm, in this part, the fourier coefficients are calculated
online and updated every sample interval. The adaptive laws
of α(k), β(k) can be written as follows

α(k + 1) = α(k)− (cos(θ)n1(k) + sin(θ)n2(k))/A (10)

β(k + 1) = β(k)− (cos(θ)n2(k)− sin(θ)n1(k))/A (11)

Where α(k) = α(t), β(k) = β(t) for t = kTs, k = 0, 1, · · ·.
Finally, the synchronous compensation signal can be con-
structed using the following equation

r(t) = αr(t) sin(ωt) + βr(t) cos(ωt) (12)

IV. SIMULATION AND COMPARISON OF THE METHODS

A. Attenuation of Synchronous Vibration

To validate the algorithms introduced above, simulations
with ILC and MBAFB control algorithm are carried out at
5000rpm. The simulation results in Fig.4 and Fig.5 clearly
demonstrated that either the ILC algorithm or the MBAFB
control algorithm can attenuate the synchronous vibration to
some degree. As shown in Fig.1, without unbalance compensa-
tion control, the maximum rotor runout is about 35µm. With
ILC control, the maximum rotor runout attenuate gradually
and significantly with the increase of repetition number (see
Fig.5). The steady-state of rotor runout can be achieved by
setting stop condition of ILC algorithm. With MBAFB control,
the steady-state rotor runout can be obtained after several
times of repetitions and maximum rotor runout is about 30µm.
Compared with ILC algorithm, the MBAFB algorithm applied
is less efficient (see Fig.4).
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Figure 4. Rotor runout curve at axis X1 with MBAFB at 5000rpm.
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Figure 5. Rotor runout curve at axis X1 with ILC at 5000rpm.

B. Tuning Lever of Controller Parameters

P-style ILC algorithm applied in this paper has a controller
parameter L. The learning gain L is required to satisfy
convergence condition below

‖I − LCB‖ < 1 (13)

Here, C and B are parameters of discrete-time close-loop
system. However, the system parameters can be neglected
when tuning the learning gain. Satisfied learning gain could
be obtained by online adjusting[2]. In addition, according to
[11], the range of learning gain L depend on the sample
time as discrete-time close-loop system parameters come from
continuous-time close-loop system. For MBAFB algorithm,
there are no additional control parameters except the mag-
nitude and phase of the close-loop system.

C. Sensitivity to Rotating Speed

In the simulation above, we assume that rotating speed
of the rotor is known precisely. However, in practice, rotor
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Figure 6. Rotor runout curve at axis X1 with MBAFB, 0.5% speed error
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Figure 7. Rotor runout curve at axis X1 with ILC, 0.5% speed error

speed varies in a certain range. The performance of MBAFB
algorithm with 0.5% speed error is illustrated in Fig.6. we
find that, with speed error, MBAFB become invalid and even
worsen the rotor runout. Fig.7 shows the performance of ILC
algorithm with 0.5% speed error. ILC become invalid similarly.
That’s because synchronous vibration detection component is
involved in the ILC algorithm to cancel out the affection of
noises in practice[2]. From analysis above, we can see that
both ILC and MBAFB algorithms are sensitive to the speed
error. The algorithms should be developed to overcome this
defect.

V. CONCLUSION

Synchronous vibration is a major vibration problem asso-
ciated with rotating machinery. For a few years, researchers
have devoted themselves to study unbalance compensation
control algorithms using active magnetic bearing through ac-
tive control. The algorithms presented can be divided into two
categories: the model-free method and model-based method.
In this paper, we establish the AMB system model and then

use a model-free method, iterative learning control and a
model-based adaptive forced balancing control to attenuate the
unbalance vibration respectively. The performances of these
unbalance control methods are compared from several aspects.
The results of this paper reflect some properties of model-
free and model-based unbalance compensation methods and
can provide references for the users to choose an appropriate
unbalance control algorithm.
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