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Abstract— This paper proposes a global harmonic analysis of a 
multiphase bearingless PM-motor topology to determine the 
radial force by considering normal and tangential field 
components. This allows establishing the semi-analytical 
expressions of the radial force considering the location of field 
origin. The accuracy of the model is verified by full FEM model 
using a statistic approach. The semi-analytic model allows 
predicting the force waveforms according t the stator-rotor 
topology. The analysis of two specific topologies is performed 
and highlights the origin of force ripples. The fastness of this 
semi-analytical model makes it suitable to implement in a design 
optimization process. 

A. Introduction 

In the last decade, high speed motors and active magnetic 
bearings have been widely used in high pure or wear-free 
applications. One challenging solution is to use bearingless 
motors,  providing both functions, torque as well as levitation 
force generation with the same machine. 

The principle of bearingless motors has been adapted for 
different motor topologies: PM motor [1], reluctance machine 
[2] or induction motor [3]. The main idea consists in creating 
levitation forces by using two consecutive field space 
harmonics of ranks	p and p + 1 [4]. The field is either created 
by windings or magnets according to the adopted motor 
topology. 

Several techniques have been developed to determine the 
radial forces in electric machines. In the particular case of 
bearingless motors many authors have proposed interesting 
contributions for different topologies. For toothless machines 
the Lorentz force can be considered [5]. Another way consists 
in using magnetic co-energy method to evaluate the forces [2]. 
An alternate approach is to use the Maxwell stress tensor 
method in the air gap [6]. 

The analytical calculation of radial forces and torque in 
bearingless machines is quite complex when field harmonics 
should be taken into account. In some cases, it is possible to 
assume some assumptions to make the calculation easier. 
Some authors have proposed to neglect the tangential 
component of the field in the air-gap [7]. This approach is 
appropriate for small air-gap machines and when normal 
component of the field is dominant. This is the case of 
induction machines or variable reluctance machines [2]. 

Other authors prefer eliminate directly the harmonic by 
winding configuration or topology but without consideration 
presumed parasitic force norm or direction of [8-9]. 

 
Figure 1 : Six slot bearingless motor geometries 

Under other conditions we can establish an analytical 
model with a large number of adjustable parameters [10] or 
with utilization of force calculated by Maxwell stress tensor 
and Lorenz force [11]. 

In this paper, the authors propose an analytical model 
based on the spectral decomposition of the fields created by 
different sources (stator winding, rotor magnets, ...). The 
calculation of the forces is performed by using the Maxwell 
stress tensor expressed in terms of different harmonics of the  
normal and tangential components of the flux density in the 
air-gap. In order to simplify the expressions and reduce the 
number of parameters, the magnetic vector potential 
formulation has been introduced. This approach allows 
evaluating the contribution of each couple of consecutive 
harmonics to the total levitation force. Thus, the design 
process of these machines is made more straightforward and 
easier. 

B. Radial force formulation 

As mentioned above [4], the radial force components of 
bearingless motor are resulting from the interaction of 
magnetic consecutive field space harmonics of ranks	p and p + 1. Using Maxwell tensor method on contour Γ figure 1, 
the projection of the force components in two axes (�, �) fixe 
relative to the stator are given in equation (1): 
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�� and �� are respectively the normal and tangential 
components of the air gap flux density. With �� ,	
 
respectively, the iron length and the radius in the middle of the 
air-gap,	�� is the angular coordinate of an arbitrary point on 
the considered contour and μ� is the permeability of vacuum. 

Using Fourier transformation, normal and tangential 
components of the flux density can be expressed as follows: 

'()
(*��+,��+, ��- = 12 ./�!+,0/12345,612037

0
+ /�!+,0/182345,6182037

��+,��+ , ��- = 12 ./�9+,0/123:5,612037
0

+ /�9+,0/1823:5,6182037
; (2) 

The subscript < indicates the nature of the considered field 
source which can be either permanent magnets or the current 
distributions. /�!+,0/	 and 	/�9+,0/	are the amplitudes of the kth 
harmonics of the normal and tangential components of the air-
gap flux density. 	��+,0	 and 	��+,0	 are their phases. 

By neglecting the saturation of the iron core, the 
superposition principle can be applied. The combination of 
equations (1) and (2) allows determining the components 
� 
and 
% 	of the force which can then be expressed by: 
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The components 
>0,+,? and 
@0,+,? 	 are the elementary 
forces generated by the interaction of two successive 
harmonics of rank k and k+1 of the flux density given in (2) 
due to the same source or different ones	<, A. 

 
>0,+? = /��+,B��?,BCD/ ���,��+,B − ��?,BCD-− /��+,B��?,BCD/ ���,��+,B − ��?,BCD-− /��+,B��?,BCD/ � !,��+,B − ��?,BCD-− /��+,B��?,BCD/ � !,��+,B − ��?,BCD- 

 

(4) 


@0,+? = /��+,B��?,BCD/ sin,��+,B − ��?,BCD-− /��+,B��?,BCD/ sin,��+,B − ��?,BCD-+ /��+,B��?,BCD/ cos,��+,B − ��?,BCD-+ /��+,B��?,BCD/ cos,��+,B − ��?,BCD- 
(5) 

 

The subscripts < and A	denote the nature of the considered 
field sources which can be either permanent magnets or the 
current source. 

The main idea is to reduce the number of parameter in 
equations (4) and (5). By considering the magnetic vector 

potential MVP J on the contour Γ,  the Fourier decomposition 
of this potential is: 

 

J+ = 12 . J+,01B037
0

+ J+,0∗ 18B037 	 (6) 

where  J+,0 = /J+,0/1B3M,6 	 (7) 
By the derivation of potential the tangential and normal 

component are given by:  

��+ = 1
 NJN�� = 12 1
 . O/J+,0/1B(35,6C$�)	1B037
0+ O/J+,0/18BP35,6C$�Q18B037 	 

(8) 

and 

��+ = − NJN
 = . − N/J+,0/N
 1B35,61B037
0

− N/J+,0/N
 18B35,618B037 	 
(9) 

By identification is possible two establish a relationship 
between tangential and normal field phase. Depending on the 
sign of ∂|Aϱ,k|/∂r two cases are possible: 

 
• θZ[,\ = θZ],\ − �̂	 when ∂|Aϱ,k|/∂r	are positive, the field 

source is located outside the air gaps contour  
• θZ[,\ = θZ],\ + �̂	 when ∂|Aϱ,k|/∂r are negative, in this 

case the field source is located inside the air gaps 
contour. 

 
Introducing the phase relationship given above in both 

equations (4) and (5), 
>B,+? and 
@B,+? can be simplified as 
follows: 

_
>B,+? = ` ���,��+,B − ��?,BCD-
@B,+? = ` � !,��+,B − ��?,BCD-; (10) 

The expression of the coefficient K depends on the 
location of the field sources with respect to the contour: inside 
the contour or outside the contour. The four possible cases are 
summarized in Table I.  

The expressions given in Table I show the impact of 
different field space harmonics on the mean value or the 
harmonics of the radial force. This can be used for improving 
the design of bearingless motor. Illustrative examples will be 
given in the following sections. 

TABLE I  COEFFIENT (K)  EXPRESSIONS  

 �B,+a��ab�cd �B,+B��ab�cd �BCD,?a��ab�cd  ,/��?,BCD/ + /��?,BCD/-. ,/��+,B/ − /��+,B/- ,/��?,BCD/ + /��?,BCD/-. ,/��+,B/ + /��+,B/- �BCD,?B��ab�cd ,/��?,BCD/ − /��?,BCD/-. ,/��+,B/ − /��+,B/- ,/��?,BCD/ − /��?,BCD/-. ,/��+,B/ + /��+,B/- 
 
 

ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 566



C. determination of harmonic evolution  

N-phase, 2-pole Permanent Magnet motor is considered. 
The stator winding is composed of n concentrated coils, one 
coil for one tooth. 

The stator phase currents (ij	;	j=1 to n) is the superposition 
of two n-phase current systems (I1 and I2) defined by. 

 

'()
(*  2,D = gD ��� hiD9 + jD + (k − 1)=! l

	 2,� = g� 	��� hi�9 + j� + 2(k − 1)=! l
;	 (11) 

 

In the general case, I1, I2, ω1, ω2, ϕ1, and ϕ2 represent the 
amplitudes, frequencies and the phases of the two systems 
respectively. 

The current system I1 generates a 2-pole magnetomotive 
force (mmf) and the current system I2 generates a 4-pole 
mmf. 
According to the multiphase winding theory, the two n-phase 
systems I1 and I2 generate forward harmonics of the air-gap 
flux density of ranks nm+1 and nm+2 and backward 
harmonics of ranks nm-1 and nm-2. 

The phase  angles of these space harmonic depend directly 
of current phase for forward harmonics the evolution are in 
same way while the evolution are reverse for backward 
harmonic 
As well as the norm of every harmonic have a linear 
dependence to the current norm. 

_/�!+,0/ = `�,0. g+						��+,0 = ���+,0 ± i+9/�9+,0/ = �̀,0. g+ ��+,0 = ���+,0 ± i+9 ; (12) 

The magnets create a radial flux density which harmonic 
spectrum depends on the size of the magnets and the nature of 
the magnetization. If the slot effect is neglected the 
amplitudes of the flux density harmonic are constant while 
their phases increase linearly with the speed of the rotor and 
the harmonic rank (13). 

_/�!s,0/ = t�9						��s,0 = ���s,0 + Oi9/�9s,0/ = t�9 ��s,0 = ���s,0 + Oi9 ; (13) 

These considerations can estimate the flux density and 
determine the force for any position of rotor and current 
configuration by performing only one FE calculation for each 
field sources.  

D. validation of model by statistic analyses 

In order to validate the developed model, it is necessary to 
test it on a large number of machines whose geometrical 
parameters Figure 2 vary in a 5-D space corresponding to 
geometrical parameters and for different scenarios of 
operation. 

The 5-D space of parameters is presented in Table II which 
gives the upper and lower bounds of each geometrical 
parameter. 

The different scenarios of operation are summarized in 
Table III. They concern mainly the values of the currents, their 
phases and the rotor position. 

The number of geometric and electrical parameters leads to 
a 10-D space. Therefore a statistical approach comparing FE 
and semi-analytical results is adopted. It consists in 
randomizing a machine and an operating point and computing 
their performances with both models. The comparison is 
focused on the radial forces determined by Maxwell stress 
tensor in the air-gap. This process is performed on 1000 
machines randomly chosen in the 10-D space. 

TABLE II   INTERVAL OF TOPOLOGY VARIABLES  

Parameter  Interval  
Slot and phase number  5 or 6 
Stator inner radius Ra 10 at 40 mm 

Air gap e 1 at 3mm 
Thickness of magnet a 1 at 5 mm 

Slot opening λ 0% to 33 % 

TABLE III   INTERVAL OF ELECTRICAL VARIABLES  

Parameter  Interval  
Rotor position    0  to  2= rad 

Norm of current system I1 : I1 0 to 400 At 
Phase of current system I1 : Φ1 0 to 2= rad 
Norm of current system I2 : I2 50 to 550 At 
Phase of current system I2 : Φ2 0 to 2= rad 

The relative errors between forces computed by the two 
methods are calculated in terms of norm and direction. Figure 
3 shows the corresponding histogram of the errors which have 
Gaussian distributions. 

For the direction of the force, the errors do not exceed 
±1.5°. The evaluation of normal distribution gives a mean 
value of  -0.002°  with a variance of 0.011°. For the norm of 
the force, the errors is less than 5% and the normal distribution 
is characterized by a mean value of 0.4% and variance of 
0.062%. 

 
Figure 2 : Representation of topology variable  

 
(a)   (b)  

Figure 3 : (a) histogram of angle error in direction of force between semi 
analytical model and FEM (b)histogram of relative norm error of force 
between semi analytical model and FEM 
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These two results allow validating this statistical approach 
in terms of size of population (1000). Consequently, the 
proposed semi-analytical model is validated by means of full 
FE calculation. 

E. Example of a bearingless 6 phase PM-motor  

We consider a 6-phase, 2-pole permanent magnet motor. 
The stator winding is composed of 6 concentrated coils 
considered like external sources of field. The rotor is 
composing of one magnet ring with radial or diametrical 
magnetization Figure 4. 

Their configuration create harmonic of flux density in air-
gap depending on their sources (magnet , system current I1 
and I2) according to equation (12) and (13) these existing 
harmonics and their frequencies are summarized in Table IV 
and V. In this tables we find the different pairs of harmonics 
which interact and generate radial force components. They can 
be gathered in three groups highlighted with the three colors 
(red, blue, green) shown in Table IV and V. They correspond 
also to the different cases listed in Table I: 

• red: force component which norm is the product of two 
sums,  

• blue: forces component which norm is the product of 
two subtractions, 

• green: forces which norm is product of subtraction and 
sum. 

Case of parallel magnetized rotor : 
 
The Table IV allows highlighting the interactions between 

the different field harmonics. The general form of the 
elementary force due to a couple of field harmonics of 
generate by currents is given as bellow: 	` cos(iD9 − i�9 + j) (14) 
where j is the shift phase between the two field harmonics.  

The interaction between the fields generated by the 
magnets and the currents can be resumed in one interaction of 
2 first harmonic with equation: ` cos(i9 − i�9 + j) (15) 

It should be reminded that to have a constant torque, the 
electric pulsation of the system I1 and the mechanical 
pulsation must be equal 	i = iD (the rotor has one pole pair,  

 
(a) Radial   (b) Parallel 

Figure 4 : Magnetization topologies of the rotor  

Table IV). In addition, to obtain a constant levitation force it is 
necessary to have 		iD = i� (equ. 13). Figure 5 Shows the 
force components 
� and 
% obtained by the proposed semi-
analytical model with the 16 first harmonics and by a full 
FEM computation. There is an excellent accordance between 
the two models; then the semi-analytical model is perfectly 
validated for parallel magnetized rotors.  

 
Case of radial magnetized rotor : 
 
As mentioned above Radially magnetized rotor generates 

flux density in the air-gap with odd space harmonics of 
frequencies	(2z + 1)i. These field harmonics interact with 
the field harmonics generated by the current system I2 which 
are shown in red and blue in Table V. The general form of the 
elementary forces due to a couple of field harmonics is in the 
following form: 

` cos(∓(2z + 1)i9 ∓ i�9 + j) (16) 

On Figure 6, we show the 
� and 
% component of the 
levitation force obtained in the case of radial magnetized rotor 
As in the case of parallel magnetized rotor, the mechanical 
pulsation and the electrical pulsation of the current system I� 
must be equal to ω = ωD = ω�. In this condition, contrary to 
the case of parallel magnetized rotor, the levitation force has 
not only a constant component, it contains also the harmonics 
as of frequency	2mω.  

 

 

TABLE IV    HARMONIC PULSATIONS FOR 6 PHASE AND RADIAL (IN READ) OR PARALLEL MAGNTIZATION 
 

Root 
field 

Space harmonium   
1 2 3 4 5 6 7 8 9 

I1 |}    −|}  |}   
I2  |~  −|~    |~  

Magnet |         
 

TABLE V   HARMONIC PULSATIONS FOR 6 PHASE AND RADIAL (IN READ) OR PARALLEL MAGNTIZATION 
 

Root 
field 

Space harmonium   
1 2 3 4 5 6 7 8 9 

I1 |}    −|}  |}   
I2  |~  −|~    |~  

Magnet |  3i  5i  7i  9i 
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Figure 5 : Force x-y components of the studied six-phase motor with parallel 
magnetization  

 

Figure 6 : Force x-y components of the studied six-phase motor with radial 
magnetization  

 
Figure 7 : Force harmonic analysis for radial magnetization 

by using both analytical model with 16 first harmonics and 
full FEM computations. In this case also there is an excellent 
agreement between the results obtained by these two models.  

The spectral analysis of the forces waveforms is shown on 
Figure 7 for both 
� and 
%components. This spectral analysis 
allows the identification of the interaction between the 
different harmonics of the flux density. For example, the 2nd 
harmonic of the force is produced by the interaction of the 2nd 

field harmonic generated by the current system I2 and the 3rd 
field harmonic generated by the magnets. In order to indicate 
the mentioned field harmonics interaction we use henceforth 
the following notation (2��, 3sc� 	⇒ 2��b�a).  

The interaction (4��, 3sc� 	⇒ 4��b�a) corresponds to the 
red group characterized by the product of two sums (Table I) 
while the interaction (2��, 3sc� 	⇒ 2��b�a) corresponds to the 
blue group characterized by the product of two subtractions 
(Table I). That’s why the amplitude of the 4th harmonic of the 
force is higher than the amplitude of its 2nd harmonic. 

Furthermore, it can be seen that the force harmonics of 
higher ranks may have several origins. For example the 
interactions (4��, 5sc� 	⇒ 6��b�a) and (8��, 7sc� 	⇒ 6��b�a) 
lead to the 6th harmonic of force. These harmonics are weak 
because they are generated by high rank field harmonics 
which have low amplitudes. 

F. CPU time considerations 

In the proposed semi-analytic model, the determination of 
radial force is performed in two steps: 
 

• The first step consists in calculating the air-gap flux 
density and its Fourier decomposition for each 
source (magnet and current systems I1 and I2). This 
is performed once and requires only 3 FE 
calculations. This step needs fixed time called 
initialization.  

• The second step consists to compute the force for a 
given instant (time) tk. Using equations (12) and 
(13), the air-gap flux density is reconstituted for the 
considered instant and the force components are 
calculate by equations (10) and Table I. This is 
performed for each instant and does not require FE 
calculations. This step needs variable time 
depending on the number of considered instants. 

 
For example in the machine considered in the previous 

section, the number of nodes us fixed to 7000 node and the 
calculations are performed with a processor Intel core i7-
3740 (2.7GHz). The first step takes 9.3 seconds and the 
calculation of the forces one point in the second step need 1 
millisecond. For 100 points over a mechanical period the 
proposed semi analytical model takes less than 10 seconds 
while the full FE method takes 235seconds. 

The CPU time is strongly reduced with the proposed model 
which can be used in optimization processes or in coupled 
models of control on Matlab-Simulink platforms. 

 

G. Conclusion  

In this paper, the authors present a new approach for 
modeling of radial forces in bearingless machines. The model 
is based on the spectral decomposition of the flux density 
distribution in the air-gap, generated by different sources 
(magnets in rotor and currents in stator). The spectral 
formulation of the radial force is performed with Maxwell 
stress tensor. It allows the calculation of the different 
interaction between the field harmonics and predicts the 
harmonic content of the force waveforms. Such model is 
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useful for the designer which may specify the undesirable 
field harmonics before starting the design. 

This model needs few FEM calculations and consequently 
it is very fast compared to full FEM computations. 
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