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Abstract- In this paper a nonlinear modeling approach is 
proposed to operate magnetic bearings above the linear range 
and near the material saturation point. The goal is to get higher 
load capacity from an existing AMB system by just changing the 
software. In order to do this, the system should be operated in 
the nonlinear region of the magnetization curve and therefore 
should be modeled nonlinearly. Simulation results show 
approximately twice the force capability. The controller 
designed using this approach has a much better transient 
response and domain of attraction. 
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I.     INTRODUCTION 
 

In this paper we introduce a new nonlinear modeling and 
control method to increase the load capacity of magnetic 
bearings. To increase the load, the electric current must be 
increased. This extra electric current and therefore extra flux 
density makes the system highly nonlinear. Therefore there is 
a need for a nonlinear model that can accurately model these 
higher operating conditions. Since it is a common industrial 
practice to include amplifiers with more capacity than needed 
for AMB systems as a safety factor, our proposed method can 
potentially increase the load capacity by just a change in the 
software. Therefore the proposed method can offer a low cost 
solution for occasional harsh situations with high transient 
loads that need to be handled by the AMB. In this study, a 
nonlinear model for magnetic journal bearings is developed 
considering the core material nonlinear behavior. This 
nonlinear behavior is shown in Fig. 1. 
Extensive research has been reported to take into account 
AMB nonlinearities. The force created by an electromagnet is 
proportional to the square of the electric current and inversely 
proportional to the square of the air-gap between the rotor 
and the stator. The AMB force is thus nonlinear, and leads to 
some complexities in control synthesis. Much research has 

been devoted to the synthesis of such control laws. The 
majority of the research in nonlinear AMB’s has considered 
current and airgap nonlinearity. The research done by Yin 
[1], Inoue [2], Abdelfatah [3], Hong [4], Smith [5] are just a 
few examples. The force, displacement, and current 
relationship have usually been studied in single-DOF 
systems. Walsh [6] considered the geometric coupling of a 2-
DOF AMB and studied the changes in stiffness and the 
resulting bifurcation. Abdelfatah [3] studied the nonlinear 
oscillations caused by the gyroscopic effect. He [7] and 
Huang [8] modeled and controlled 5 and 6-DOF systems. 
Other researches have considered geometric nonlinearities by 
Hu [9], amplifier nonlinearities by Inoue [2], hysteresis by 
Wang [10] and control system delays by Tsuyoshi [2,11] and 
Zheng [12,13]. More recently, self-sensing magnetic bearings 
by Noh [14] and contact between rotor and the auxiliary 
bearing by Foiles [15] have been studied. Steinschaden [16] 
and some others considered the magnetic flux saturation by 
using a simple bilinear model. Widger [17] and Rivas [18] 
incorporated the material saturation by curve fitting. Even 
though magnetization nonlinearity is modeled in some of the 
previous work, these models are not used for controller 
development. In this paper, the magnetization nonlinearity is 
modeled precisely, using the Lur’e method. This method 
makes the model more suitable for control design, which in 
turn enables the design of controllers that significantly 
improve the load capacity of the system. 
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Fig. 1 Silicon iron magnetization curve 
 

II.   DYNAMIC MODEL AND CONSTRAINTS 
 
A.     Introduction 
In this paper a balance beam is used for dynamic modeling 
and simulation. The mechanical part is basically a beam free 
to rotate on a pivot. The angle of the beam with the horizon is 
controlled by the two electromagnets on both ends of the 
beam. This system emulates the dynamics of a single DOF 
thrust magnetic bearing. The equation of motion can be 
written as follows: 
 

! 

J ˙ ̇ " = #D ˙ " + La F2 # F1( )                                               1( )  
 
 

 
Fig. 2 The balance beam 
 
Here 

! 

J  is the mass moment of inertia of the beam, 

€ 

θ  is the 
angle between the beam and the horizontal direction. D is the 
system damping due to the pivot and air friction.  and  
are the left and right electromagnetic forces and  is the 
distance between electromagnets and pivot (see Fig. 2).  
 
B.   Nonlinear Force Model 
Since the proposed model works in the nonlinear B-H region, 
the flux density is very high and the magnetic reluctance of 
the core material cannot be neglected. Therefore the flux 
density in the electromagnets can be calculated as follows:    
 

! 

B1,2 =
NI1,2

2 g0 ± z( )
µ0

+
Ls

µ r

                                                   2( )  

 
Here  and  are the flux density of the electro magnets, 

 is the length of silicon iron in the magnetic circuit, N is 
the number of turns in each coil,  is the permeability of 
free space,  is the relative permeability of silicon iron,  
is the airgap, 

€ 

I1 = Ib + I c  and 

€ 

I 2 = Ib − I c  are the electric 
currents,  is the control current,  is the bias current, 

€ 

Ls /µ r
 
is the magnetic reluctance of the silicon iron, and 

€ 

2g0 /µ0  is the magnetic reluctance of the airgap. 
In the nonlinear region of the B-H curve the relative 
permeability of the silicon iron can be modeled as follows: 
 

€ 

µ r = aB + b                                                                  3( )  
 
Here a and b are two constants that were found by curve 
fitting on the nonlinear region of the B-H curve. The actuator 
force is related to the flux density by the following equation: 
 

€ 

F =
A
µ0

B2                                                                   4( )  

 
By using a combination of Eqs. 2,3, and 4, the force of each 
electromagnet can be calculated using the following 
equations: 
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Here 

€ 

c1,c2 ,...,c11  are constants based on system parameters 
and they can be found in the appendix. z is the displacement 
of the end of the beam. These force equations are valid for 
the nonlinear part of the B-H curve. For the linear part of the 
B-H curve, the conventional equations are used. Figure 3 
shows that the proposed nonlinear model closely matched the 
manufacturer material data. The balance beam dimensions 
and other physical parameters are listed in Table 1. 
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Table 1-Balance beam parameters 
 Parameter Value 

! 

La  Electromagnet distance from the pivot 0.1667 m 
D Pivot friction coefficient 0 Ns/m 
J Moment of inertia 16.32 gm^2 
N Number of turns per coil 110 Turns 

! 

g0  Airgap 0.397 mm 

! 

Ls  Distance the flux travels inside the core 0.178 m 

! 

Ib  Bias current 1.55 A 

! 

Ks  Stiffness  1236540 N/m 

! 

Imax  The maximum electric current 9.61 A 

! 

"max  The maximum angle of rotation 0.0024 Rad 
 
 

 
Fig. 3 Each electromagnet’s force vs., coil current 
 

III    CONTROL 
 

The Lur’e method was used for nonlinear modeling. The 
control problems described by the Lur’e method have a 
forward path that is linear and time-invariant, and a feedback 
path that contains a memoryless, possibly time-varying, 
nonlinearity (see Fig. 4). In the figure, A is the state matrix, 

€ 

Bu  is the input matrix, 

€ 

Bw  is the disturbance input matrix, 
and 

€ 

Cy  is the output matrix. This method breaks the 
nonlinear model into linear and nonlinear parts, which 
simplifies the control synthesis process.  
 

 
Fig. 4 Balance beam in terms of Lur’e problem 
 

The total balance beam force can be calculated as follows:  
 

€ 

F = Ksz + f i I c( )                                                                7( )

z = Laθ                                                                             8( )  
 
Here, F is the net actuator force (

€ 

F = F1 − F2). 

€ 

Ks  can be 
obtained by linearizing the force around its equilibrium point, 
and 

€ 

f i I c( )  is the nonlinear force due to the electric current 
assuming no displacement. The balance beam can be 
modeled into the Lur’e system formulation as follow, 
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In terms of the Lur’e problem, 

€ 

f i I c( )  is the nonlinear input 
and should therefore satisfy the sector condition. The sector 
condition constraints the system within two sector bounds 
which normally are two straight lines. In addition to the 
regular sector condition, the generalized sector condition that 
is developed by Lin et al. [19] is used in this work (see Fig. 
5). The generalized condition includes using two segmented 
lines instead of two straight lines, which enables the resulting 
control design to be less conservative.  
 

 
Fig. 5 Generalized sector condition 
 
In addition to the sector condition, there are other physical 
constraints that need to be satisfied to make sure 1) the beam 
will not contact the electromagnets, 2) the coils will not 
overheat, 3) and the total current in each electromagnet is 
positive. These conditions are expressed mathematically as 
follows:  
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€ 

I c ≤ Imax                                                                            10( )

I1, I 2 > 0                                                                              11( )

θ ≤θmax                                                                             12( )
 
 
Here 

€ 

Imax  is the maximum tolerable current without 
overheating the coil and 

€ 

θmax  is the beam’s maximum 
allowable rotation angle. 
 

IV       RESULTS 
 
By using linear matrix inequalities and linear programming, 
an optimized control for the system of Equations (9) is 
designed that satisfies the physical constraints. The 
conventional linear model is compared to the nonlinear 
model with both normal and general sector conditions. The 
first objective was to obtain the largest possible domain of 
attraction (invariant ellipsoid). In other words, a controller is 
designed that can provide the largest initial angular 
displacement which also ensures system stability. The 
following optimization problem is solved to achieve this 
objective: 
 

  

€ 

P>0,F
supα

a( )  αxi ∈ ε P( ),i = 1,2,, l  and  xi ∈ X0

b( )  A + k1BF( )T P + P A + k1BF( ) ≤ 0

      A + k2BF( )T P + P A + k2BF( ) ≤ 0           13( )
c( )  ε P( ) ⊂ L F( )
d( )  ε P( ) ⊂ L G( )  

 
Here, P is a positive definite variable, 

€ 

ε P( )  is the invariant 
ellipsoid, and G is the state constraint matrix which in here 
can be defined as 

€ 

G = [1/θmax  0]. In Part (a) of the 
optimization problem of Equation (12), the 

! 

xi ’s are chosen 
points that determine the shape of the domain of attraction 
(the ratio of the major and minor axis of the invariant 
ellipsoid). The optimization problem maximizes 

€ 

α  which 
corresponds to the size of the invariant ellipsoid. Part (b) 
guarantees the stability of the system on the normal sector 
bounds. k1  and k2 are the slopes of the two sector bounds. 
For generalized sector bounds the following constraint should 
be used instead of constraint (b): 
 

  

€ 

b1)  A + k0mBF( )T P + P A + k0mBF( ) < 0

b2)  A + BHim( )T P + P A + BHim( ) < 0,  i ∈ I 1,N[ ]          14( )

b3)  ε P( ) ⊂ L Him − kimF
cim

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

N


 

 
Here, 

€ 

Him  is a new variable in the optimization problem, kim  
is the slope of different segments of the sector bound and cim
is the y-intercept of these segments. For example k31 is the 
slope of the fourth segment of the first sector bound and c12 is 
the y-intercept of second segment of the second sector bound. 
For the first segment i = 0  and since it passes through the 
origin, the y-intercept is zero. 
Part (c) and part (d) define the amplifier and state constraints 
respectively. The domain of attraction and the constraints are 
depicted in Fig. 6. Three different control designs are 
compared. “Nonlinear Regular” is the domain of attraction of 
the system under a feedback control that is designed using 
the nonlinear model with regular sector conditions; 
“Nonlinear Generalized” is the domain of attraction of the 
system under the controller designed using the nonlinear 
model with generalized sector conditions, and “Jacobean” 
marks the domain of attraction obtained by a controller 
designed based on the linear Jacobean model. 
 

 
Fig. 6 Domain of attraction for linear and nonlinear models 
 
The sloped lines represent the constraint imposed by the 
maximum possible electric current. By using the nonlinear 
model, these constraints are less restrictive and allow larger 
initial velocities. 
The second objective was to obtain the fastest transient 
response. To achieve this objective the following 
optimization problem is solved: 
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€ 

P>0,F
sup β

a( )  xi ∈ ε P( ),i = 1,2,, l  and  xi ∈ X0

b( )  A + k1BF( )T P + P A + k1BF( ) ≤ −βP

      A + k2BF( )T P + P A + k2BF( ) ≤ −βP                     15( )
c( )  ε P( ) ⊂ L F( )
d( )  ε P( ) ⊂ L G( )

 

 
The various parts of this optimization problem represent the 
same constraints as the previous optimization problem, but 
here a larger 

€ 

β  represents a better transient response. 
Therefore 

€ 

β  is optimized. As for the previous optimization 
problem, to use the generalized sector condition, Equation 
(14) should replace condition (b) in Equation (15). The 
results show that using the nonlinear model can significantly 
improve the transient response of the system (see Fig. 7). 
Systems responses to a step input and zero initial conditions 
are shown in Figure 7. As can be seen, the two controllers 
that are designed using the nonlinear model have 
significantly better transient responses. These control designs 
result in approximately half of the settling time compared to 
the linear model, which is a significant improvement. 
 

 
Fig. 7 Transient response of linear and nonlinear models 
 

V     CONCLUSIONS 
 

In this paper a new nonlinear model using modeling material 
magnetization in AMBs was proposed for the first time. State 
and input constraints were also considered in modeling. LMI 
optimization and the Lur’e method were utilized for control 
synthesis. Simulation results illustrate a larger domain of 
attraction. Also the proposed model enabled controllers to be 
designed with significantly better transient response. In 
general, the proposed model provides the system with extra 
force when it is needed. More importantly, these 

improvements can be achieved by only changing the control 
algorithm and no change in the hardware is necessary. This 
extra capability can potentially be used to design smaller, 
lighter, and more reliable magnetic bearings. 
 

APPENDIX 
Force constants: 
 

€ 

c1 =
Aµ0

8N 2 ,           c2 =
a L1 + L2( )A + 2a 2Ag0

2µ0b
2

c3 =
A L1 + L2( )2

+ 4a L1 + L2( )Ag0 + 4a 2Ag0

8µ0b
2

c4 =
AN
2

,c5 =
aA
bµ0

,c6 =
A L1 + L2( ) + 4Aag0

4bµ0

c7 =
µ0

2

16N 2 ,           c8 =
µ0N 2ag0 − L1 − L2( )

8b

c9 =
µ0Na

4b
,             c10 =

a L1 + L2( ) + 2a 2g0

4b2

c11 =
L1 + L2( )2

+ 4a L1 + L2( )g0 + 4a 2g0
2

16b2
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