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Abstract—This paper concerns null-flux, centering electro-
dynamic bearings with an internal rotor made of permanent
magnets creating a multipole radial magnetic field and with an
external airgap wounded conductor attached to a yoke. The inclu-
sion of a ferromagnetic yoke in front of the permanent magnets
has the two following effects. On the one hand, it increases the
magnetic flux density in the airgap and the magnitude of the
centering Lorentz forces between the rotor and the stator of
the device. This is positive since the stiffness associated with the
centering force of the bearing increases too. On the other hand, it
also induces a negative stiffness due to the reluctant force between
the yoke and the magnets usually referred to as the unbalanced
magnetic force. The goal of this paper is to investigate about the
gain in stiffness and performance associated with the presence of
a ferromagnetic yoke in multipole electrodynamic bearings. To
this purpose, a method is exposed to evaluate the stiffness and
stability of the bearing objectively using a root-loci plot. The
results are based on a 2-D analytical model of electrodynamic
bearings which is briefly presented in the paper. It is shown that
in some cases, the magnetic permeability of the yoke has a very
low impact on the bearing performance.

I. INTRODUCTION

Magnetic bearings ensure a contactless guiding function.
This makes them more suitable than mechanical bearings for
high-speed and/or lubrication-free applications, among others
[1]. Nowadays, the magnetic bearings used in the industry are
controlled actively. This requires the use of sensors, controllers
and power electronics. However, the complexity, cost or bulk
associated with this control system can become prohibitive,
especially for small rated power applications [2].

A way to overcome these disadvantages could be to use
magnetic bearings which do not require external control means
i.e., passive bearings. They include supraconducting and elec-
trodynamic bearings. Unlike supraconducting bearings, elec-
trodynamic bearings can operate at room temperature and
therefore, they do not require a bulky cooling system. This
makes them more compact and simpler [3] and more attractive
for stationary applications. Some well-known examples of
electrodynamic bearings were studied in [4], [5], [6].

In [7], an analytical study of a new centering electrodynamic
bearing with a radial magnetic field was presented. The
proposed topology is shown in Fig. 1. It has an internal
rotor comprising a ferromagnetic shaft and permanent magnets
generating a multipole radial magnetic field in the airgap. The
stator is external and comprises a winding and a yoke. This
yoke can be made of a ferromagnetic material or not. The

topology of this bearing is very simple and allows to build
a device using existing components developed for electrical
motors, thereby reducing production costs.

In such a bearing with a radial magnetic field, the material of
the winding yoke impacts the bearing performance. The goal
of this paper is to investigate about the advantages associated
with the presence of a ferromagnetic yoke.

In section II, the bearing topology is presented. In section
III, a 2-D analytical model of multipole electrodynamic bear-
ing is summarized. This model gives the forces between the
rotor and the stator of the bearing, and the root-loci plot of
the centering bearing is derived from it. The way to evaluate
the bearing stiffness and stability on the basis of the root-loci
plots is exposed in section IV and a comparison is made in
section V.

II. BEARING TOPOLOGY

The internal rotor of the proposed bearing comprises a
ferromagnetic shaft surrounded by permanent magnets. These
magnets induce a radial magnetic field with p pole pairs in the
airgap. The external stator of the bearing comprises an airgap
axial winding with q = p+ 1 pole pairs, k phases and a yoke.
The p = 1, q = 2 case with three phases is illustrated in Fig.
1. The geometrical parameters of the bearing are given in Fig.
2. As demonstrated in [7], verifying identity q = p+1 ensures
that the winding is null-flux and that it can interact with the
permanent magnets to produce a radial centering force.
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Figure 1. Bearing topology with p = 1, q = 2 and k = 3. The phases are
denoted A,B and C. The airgap width is exaggerated.
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Figure 2. Geometrical parameters of the bearing.

III. FORCES

A 2-D analytical model was built to calculate the electro-
magnetic forces between the rotor permanent magnets and the
windings of the bearing when the rotor is off-centered. This
model is similar to the one used in [8], and only the main
steps are given in this section.
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Figure 3. Coordinates of the model.

The coordinates used in this model are shown in Fig. 3. The
rotor center is OR, the armature center is OA and the axes
x − y and X − Y are attached to the rotor and to the stator,
respectively. The position of the rotor and the expressions of
the magnetic fields are given by coordinates (ε, φ) and (r, θ),
respectively. As illustrated in Fig. 3, the rotor spins around its
axis at speed ω and whirls around the axis of the winding at
speed λ. To build the model, the following assumptions are
made:

1) the end effects are not considered and the problem is
assumed to be two-dimensional;

2) the permanent magnets have a linear magnetic character-
istic, the rotor shaft is made of a ferromagnetic material
with infinite magnetic permeability, and the winding
and the permanent magnets have the same magnetic
permeability as air. The magnetic permeability of the
yoke is either infinite or the same as air, depending on
whether the bearing has a ferromagnetic yoke or not;

3) Eddy current losses in the magnets and ferromagnetic
parts are neglected;

4) the amplitude of the off-centering ε is small compared
to the nominal airgap of the bearing;

5) ω and λ are constants and the electrical variables are in
a steady-state regime;

6) when calculating the electromotive force in the winding,
the effects of the displacement in the radial direction dε

dt
are assumed to be much smaller than ω and λ.

The goal of the model is to obtain the forces between the
rotor and the stator of the bearing. These forces are calculated
using the Maxwell stress tensor. For this purpose, the magnetic
field created by the permanent magnets and by the currents
induced in the winding should be calculated. This requires to
calculate the induced currents which in turn depend on the
electromotive force (emf), the phase resistance and the cyclic
inductance of the winding.

First, the analytical expression of the vector potential from
the permanent magnets was obtained from [9] and [7]. Because
of hypothesis 1 from the previous list, it only has an axial
component, and because of hypothesis 3 only the first order
terms in ε were kept in the Taylor developments of the
magnetic vector potential:

AMz(r, θ) =
∞∑

n,odd

{
Cn(r) sin (np(θ − θs))

+ εĈn(r) sin ((np+ 1) θ − npθs − φ)

+ εČn(r) sin ((np− 1) θ − npθs + φ)

} (1)

with:

Cn(r) = K1nr
−np +K2nr

np

Ĉn(r) = K1nr
−np−1np+K5nr

np+1 +K6nr
−np−1

Čn(r) = −K2nr
np−1np+K3nr

np−1 +K4nr
−np+1

(2)

In (2), coefficients K1n, ...,K6n are constants which depend
on the geometry and on the magnetic properties of the rotor
permanent magnets. The magnetic field fundamental harmonic
has p pole pairs and the higher-order harmonics have np pole
pairs with n being an odd number only. When the rotor is
centered, ε = 0 and only the terms with Cn remain in (1).
When the rotor is off-centered, ε 6= 0 and other harmonics
appear. They correspond to the terms with Ĉn and Čn in (1)
and their amplitudes are proportional to ε.

The magnetic flux created by the permanent magnets in the
winding phase i is denoted ΦMi and can be calculated as
follows:

ΦMi = L

∫ Ra

Rw

∫ 2π

0

AMz(r, θ)
Ji(r, θ)

Ii
rdθdr, (3)

where L is the axial length of the bearing, and Ji(r, θ) and Ii
are the current density and the current amplitude in phase i,
respectively. For phase i in an axial winding with k phases:

Ji(r, θ)

Ii
=

2kqN(−1)v

π|R2
a −R2

w|
if r ∈ [Rw, Ra] and

θ ∈
[
δi +

π(k − 1)

2kq
+
πv

q
, δi +

π(k + 1)

2kq
+
πv

q

]
,

(4)
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and Ji(r,θ)
Ii

= 0 otherwise. In this expression, δi = πi
qk is the

angular position of phase i and v ∈ {0; 2q − 1}. The Fourier
development of this function is:

Ji(r, θ)

Ii
=

∞∑
m,odd

8Nkq

π2m|R2
a −R2

w|
sin
(mπ

2

)
sin
(mπ

2k

)
sin (mq (θ − δi)).

(5)

Because q = p + 1, only the terms with coefficients Ĉn and
Čn in (1) can give a non-zero contribution to ΦMi, as exposed
in [7]. The amplitude of ΦMi is thus proportional to ε too, as
well as the corresponding emf induced in a phase i of the
winding. Given hypothesis 5, it can be calculated as:

emf = −dΦMi

dt
= −∂ΦMi

∂θs
ω − ∂ΦMi

∂φ
λ

=
∞∑

m,odd

{
εÊm sin ((mq − 1)θs −mqδi + φ)

+ εĚm sin ((mq + 1)θs −mqδi − φ)

}
.

(6)

In this expression, Êm and Ěm are constants depending on
the geometry and magnetic properties of the winding, as well
as the operating speed and pole pair numbers of the rotor and
winding. These constants may cancel for some m.

To illustrate this, let us consider the first vector potential
harmonic with coefficient Ĉn=1 in (1). It has (p + 1) pole
pairs which is the same as the winding. Therefore, it induces
a non-zero time-varying magnetic flux in the winding and
Ê1 6= 0.

Let us continue with the model. Knowing the induced emfi
from (6) allows to calculate the current Ii in phase i through:

Ii =

∞∑
m,odd

{
εÊm

sin ((mq − 1)θs −mqδi + φ− ϕ̂m)√
R2 + ((mq − 1)ω + λ)2L2

c

+ εĚm
sin ((mq + 1)θs −mqδi − φ− ϕ̌m)√

R2 + ((mq + 1)ω + λ)2L2
c

} (7)

with:
ϕ̂m = atan

(
((mq − 1)ω + λ)Lc

R

)
ϕ̌m = atan

(
((mq + 1)ω + λ)Lc

R

)
where R and Lc are the winding phase resistance and cyclic
inductance, respectively. The phase difference between emfi
and Ii is denoted ϕm. The previous reasoning can be repeated
for every winding phase. Once the current in each phase is
known, the magnetic field created by this current in the airgap
is found by solving Maxwell’s equation for the magnetic field
in the airgap. This was done in [10] for the bearing with a
ferromagnetic yoke and a similar approach was used in the
yokeless case. The magnetic field BI in the airgap due to
the induced current flowing in the entire winding is obtained
by summing the contributions of each phase. Because of
hypothesis 2 at the beginning of this section, the total magnetic

field Btot in the airgap is the sum of the magnetic field from
the winding and from the rotor permanent magnets:

~Btot = ~BM + ~BI , (8)

with ~BM = ∇ × ~AMz . Finally, the force between the rotor
and the winding was obtained by integrating Maxwell’s stress
tensor in the airgap. This allows to obtain the force component
acting on the rotor in the direction of the off-centering and in
the direction perpendicular to it Fε and Fφ, see Fig. 1:

Fε =

∫ 2π

0

{
1

2µ0

(
B2
tot,r −B2

tot,θ

)
cos(θ − φ)

−Btot,rBtot,θ
µ0

sin(θ − φ)

}
Lrdθ;

Fφ =

∫ 2π

0

{
1

2µ0

(
B2
tot,r −B2

tot,θ

)
sin(θ − φ)

+
Btot,rBtot,θ

µ0
cos(θ − φ)

}
Lrdθ;

(9)

where Btot,r and Btot,θ are the radial and azimuthal compo-
nents of the magnetic field, respectively. As will be shown
in the next sections, these forces may be pulsating. The time
averages of these forces are obtained by removing the time-
dependent terms in (9) and are denoted F̄ε and F̄φ. In the next
sections, the pulsating component is neglected compared to
the time average forces on the bearing rotor. Indeed, pulsating
forces can be reduced by increasing the number of phases [7].

IV. PERFORMANCE EVALUATION

In this section, the effects of F̄ε and F̄φ on the stability
of the bearing is first exposed. Then, a way to compare
two bearings with and without ferromagnetic yoke using the
model developed in the previous section is presented.

Due to the assumptions exposed in section II, the forces pre-
dicted by the model are directly proportional to ε. Therefore,
the effects of F̄ε and F̄φ can be associated with stiffnesses Kε

and Kφ through F̄ε = −Kεε and F̄φ = −Kφε.
When Kε > 0, it has a positive effect since it is acting

on the rotor toward the axis of the winding, see Fig. 1. On
the contrary, Kφ has a negative effect on the stability of the
bearing whatever its sign. It induces a whirling motion of the
rotor around the axis of the winding, resulting in centrifugal
forces acting on the rotor. These centrifugal forces grow
and finally overcome Kε, thereby preventing the rotor from
coming back toward the center of the winding. Finally, it
appears that such a bearing is not stable without providing
additional damping to cancel the effect of Kφ. This is
consistent with [5], [11], [12] and with the results from the
next sections. Since it is widely acknowledged that adding
contactless damping in the system by passive means is not
easy, the amplitude of F̄φ should therefore be minimized.

In order to compare or optimize electrodynamic bearings,
it is necessary to evaluate their performance objectively. For
this purpose, looking at F̄ε and F̄φ is not sufficient since it
does not give the amount of damping which must be added to
have a stable bearing e.g..
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Let us show how a root loci plot can be used to evaluate
the performance of a bearing objectively. This has been used
in previous works on the stability of a system comprising
electrodynamic bearings. In [13], a parametric model was
derived. It was validated by identification of the parameters
with experimental data and by showing that the predicted
stability threshold spin speed corresponds with experimental
results. Compared with the model exposed in the previous
section, the model from [13] can be used with homopolar
and heteropolar bearings and neither requires to derive the
current amplitude nor to make assumptions 1, 5 and 6 from
the previous section. However, this model alone cannot be
used in a design optimization process because the parameters
depend on the bearing geometry and must be identified first.

Let us derive the root loci plot using the 2-D model exposed
previously. Using complex numbers for vector quantities and
noting the position of the rotor z = X + jY = εejφ, the
motion equation of the rotor is:

mz̈ + cż +Kεz + jKφz = 0, (10)

where j =
√
−1, m is the rotor mass and c is the external

damping added in the system. The stiffnesses Kε and Kφ are
calculated for a fixed spin speed ω and a zero whirl speed λ
because λ << ω. This will be validated later in this section.
The governing set of equations of the associated state-space
model are: [

z̈

ż

]
= A

[
ż

z

]
+

1

m
B, (11)

with:

A =

[
−c
m

−Kε−jKφ
m

1 0

]
. (12)

In (11), matrix B is the external input force matrix and A is
the dynamic matrix whose eigenvalues give the root loci plot.
The two eigenvalues are:

ρ1,2 =
−c
2m
±
√( c

2m

)2
− Kε + jKφ

m
. (13)

The root loci of a system comprising a bearing without
additional damping is shown in Fig. 4 for different speeds
ω and yoke material. This was obtained for a bearing with the
dimensions from Table I and with a rotor mass m = 50[kg].
The permanent magnet at the rotor has a parallel magnetization
pattern with p = 1 and a remanent magnetic field density
Brem = 1.32[T ]. The winding has two pole pairs and three
phases.

Table I
BEARING DIMENSIONS [mm].

Ri Rm Rw Ra L

2 18 19 21 70

As can be seen in Fig. 4, there is a rotational symmetry with
respect to the origin so that whatever the material of the yoke,
one of the two roots of the system is always on the right-hand
side of the plane i.e., its real part is positive. This indicates that

80j

−80j
60−60

0

0

non-ferromagnetic yoke

ferromagnetic yoke
ω

ω

ω

ω

Figure 4. Root loci for ω ∈ [0, 2π5000] and c = 0. The arrows show the
direction of increasing ω.

the bearing is always unstable when no damping is added in
the system and it corresponds to expectations. As ω increases,
the winding becomes more inductive, Fε (and Kε) reach a
maximum value while Fφ (and Kφ) decrease toward zero. The
unstable root approaches the stability region on the left-hand
side of the plane and |<{ρ}| << |={ρ}|, see the region with
a red square in Fig. 4. Let us focus on the behaviour of the
unstable roots in this region. The root-loci is drawn for c = 0,
so in this case (13) becomes:

ρ1,2 = ±j
√
Kε + jKφ

m
. (14)

If the unstable root of the root loci with c = 0 is such that
|<{ρ}| << |={ρ}|, two observations can be made. Firstly,
Kφ << Kε and therefore ={ρ1,2} can be associated with the
stiffness Kε toward the center of the stator through:

={ρ1,2} ≈ ±
√
Kε

m
. (15)

Secondly, if a reasonable amount of damping c is introduced
to make the unstable root reach the imaginary axis toward the
stability region, it can be derived from (13) that <{ρ} moves
− c

2m to the left.
From these two observations, it appears that the stability

and the stiffness of a bearing can be evaluated separately.
Therefore, if two bearings with a same mass m and damping
c = 0 are operating in a region such that |<{ρ}| << |={ρ}|,
looking at their real and imaginary parts allows to know which
one has the greatest stiffness and/or needs less damping to be
stable.

The assumption λ << ω can be validated as follows. When
no external damping is added to the bearing, it was observed
that the rotor trajectory is an outward spiral and that the value
of λ quickly reaches a constant value given by |={ρ}|. The
evolution of this value with ω is given in Fig. 5, showing that
the assumption λ << ω is valid whatever the value of ω.

Finally, let us add that these results are limited to bearings
operating in a region such that |<{ρ}| << |={ρ}|. However,
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Figure 5. Evolution of the whirl speed λ with ω.

this assumption is not very constraining as this is the operating
region that will be preferred when considering the difficulty
of adding external damping in the system.

V. BEARING COMPARISON

Using the results from the previous section, let us show
an example of comparison between two bearings with and
without ferromagnetic yoke. The study is based on the
following assumptions. Both bearings have the same rotor
and the same air gap thickness. Therefore, the bearings’ rotors
have the same mass m and the only remaining geometrical
variable is Ra, see Fig. 2. The default geometrical and
magnetic parameters are the same as in the previous section.

The selection process for the best bearing is the following.
The bearings have to provide a minimum stiffness when
operating above a given threshold speed. The best bearing
will be the one meeting these requirements and requiring the
less damping to reach stability.

−50j

−65j

250

ω
Ra

Ra
500Hz

ω

ω

20mm

22mm

24mm

non-ferromagnetic yoke

ferromagnetic yoke
ωωω

Figure 6. Unstable poles in the area of interest of the root loci for c = 0.
The dotted (solid) lines correspond to a fixed ω (a fixed Ra).

Fig. 6 shows a zoom on the area of interest in the root loci
plot. The dotted lines were obtained for a fixed speed ω and an
increasing radius Ra. They give the minimum operating speed
of the two bearings so that the area of interest with ω > 2π500

is below these curves. The solid lines were obtained for the
fixed radii Ra = 20, 22, 24[mm] and an increasing speed ω.
The evolution of the bearing properties with speed can thus be
observed by following these solid lines in the region above the
threshold speed. The performance of a bearing for a given set
of parameters (Ra, ω) is obtained by looking at the crossing
points between the corresponding dotted and solid lines. E.g.,
two such points for (Ra = 24[mm], ω = 500[Hz]) are in the
red circle of Fig. 6. For this set of parameters, the bearing
with a ferromagnetic yoke has a better stiffness and better
stability properties. Looking at Fig. 6, it is clear that the
bearing performance improve with speed.

0 6

−67j

−58j

non-ferromagnetic yoke
ferromagnetic yoke

Ra=24mm

Ra=22mm

Ra=20mm

Ra=24mm

Ra=22mm

Ra=20mm

−40j

−60j
0 6

ω

ω

ω

(a)

(b)

ω

ω

ω

Figure 7. Root loci of the bearings with no damping, p = 1 and Ri = 0[mm]
(a) or Ri = 10[mm] (b).

In order to see the evolution of the previous result with
ω and Ra, more data is needed, as shown in Fig. 7. This
was obtained for different rotor shaft radii Ri = 0[mm] and
10[mm]. From Fig. 7 (a), it appears that the yoke material
does not have a significant influence on the bearing stiffness
and stability in the area of interest when Ri = 0[mm].
E.g. for Ra = 24[mm], a bearing with a ferromagnetic
yoke has a better stiffness but is less stable than a bearing
with no ferromagnetic yoke, but the differences are not very
significant. However, these differences increase with Ri as
shown in Fig. 7 (b). Comparing the corresponding points
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for each kind of yoke, it appears that the bearing with a
ferromagnetic yoke has a significantly greater stiffness but is
less stable. Finally, the stiffness of the two kinds of bearing
decrease with Ri, which is consistent with intuition since the
amount of permanent magnet decreases with Ri.
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−80j
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Figure 8. Root loci of the bearing without damping, p = 2 and with Ri =
0[mm] (a) or Ri = 10[mm] (b).

Fig. 8 shows the same data than Fig. 7, except that the
pole pairs number of the rotor and of the winding are p =
2 and q = 3. The permanent magnets still have a parallel
magnetization pattern. Looking at Fig. 8 (a), it appears that
the stiffnesses of the bearings are improved but the differences
between the bearings with and without ferromagnetic yoke
remain small and the situation is similar to Fig. 7 (a). Fig. 8
(b) shows that increasing the shaft radius Ri is less favourable
for the bearing without ferromagnetic yoke, but the difference
between Fig. 8 (a) and (b) is much smaller than the difference
between Fig. 7 (a) and (b). Last but not least, the bearing with
a ferromagnetic yoke has a lower stiffness the the bearing
without ferromagnetic yoke when Ri = 20[mm] i.e., when
the yoke is close to the permanent magnets. This is due to the
higher order harmonics in the permanent magnet field. They
contribute to the negative stiffness associated with the reluctant
force between the permanent magnets and the ferromagnetic
yoke, but they do not contribute to the centering Lorentz force
between the permanent magnet and the winding. This effect
cancels as Ra increases and was not observed with p = 1
because there was no higher order harmonics in the permanent

magnet field in this case.

VI. CONCLUSION

In this paper, the influence of the magnetic permeability
of the yoke on the behaviour of electrodynamic bearings was
studied. To this end, a 2-D analytical model was presented and
used to draw the root loci plot of the bearings without external
damping. Considering the difficulty of adding the external
damping to the bearing which is necessary to achieve stability,
the area of interest to operate an electrodynamic bearing was
identified in the root loci plot. Then, a way to use this plot to
evaluate the stiffness and stability properties of the bearings
independently was presented. Finally, this model was used to
compare bearings with and without a ferromagnetic yoke.

It was shown that the yoke material does not have a
significant influence on the performance of the bearing for a
small rotor shaft radius. As this radius increases, the stiffness
of the bearing decreases and this effect is more significant
for a bearing without ferromagnetic yoke. Also, increasing
the pole pairs number of the bearing has a positive effect on
the bearing stiffness but is less advantageous for a bearing
with a ferromagnetic yoke when the yoke is close to the
permanent magnets. Finally, this paper shows that choosing
the yoke material is not a trivial issue and requires a more
comprehensive optimization process to be carried out.
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