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Abstract: The equivalent stiffness and the equivalent 
damping are the important and commonly used 
parameters for representing the support 
characteristic of the Active Magnetic Bearing(AMB). 
A method for measuring the equivalent stiffness and 
the equivalent damping is proposed with parameter 
identification via the multi-frequency excitation. The 
parameter identification is based on the multi-degree 
of freedom(DOF) rotor model, not the single DOF 
model, which can not be suitably applied to the 
multi-DOF AMB-rotor system. Additionally, the 
Schroeder Phased Harmonic Sequences(SPHS) are 
applied to generate the signal for the multi-frequency 
excitation. SPHS can achieve the lowest peak value by 
means of appropriate selection for the relative 
phasing of each frequency component, so that the 
possibility of the rotor vibration exceeding clearances 
of AMB and the magnetic force reaching saturation is 
minimized. Finally, the experiments indicate that the 
proposed method can efficiently reduce the peak 
value for the superimposed multi-frequency 
excitation and correctly identify the equivalent 
stiffness and equivalent damping of the AMB-rotor 
system. 
Keywords: active magnetic bearing, multi-frequency 
excitation, Schroeder phased harmonic sequences, 
equivalent stiffness, equivalent damping 
 

1. Introduction 
The active magnetic bearing(AMB) can not only 

provide the levitating support for the rotor without any 
mechanical friction, but also apply the real-time 
magnetic force to suppress the rotor vibration. For the 
performance advantages of the AMB technology, more 
and more attentions have been focused on the AMB 
application.  

For either the traditional mechanical bearing or the 
active magnetic bearing, the support characteristic is the 

foundation for the rotor dynamics analysis. In the 
traditional mechanical bearing, the commonly used 
parametric representation for the support characteristic 
are the stiffness and the damping, which are also used for 
the active magnetic bearing, namely, the equivalent 
stiffness and the equivalent damping. 

In recent years, there have been a great number of 
investigations into measuring and analyzing the AMB 
support characteristic. Tsai et al.[1] applied the wavelet 
transform algorithm to identify the magnetic damping 
and magnetic stiffness coefficients of the AMB system 
and analyzed their nonlinear order. Lim et al.[2] 
identified the equivalent stiffness and the equivalent 
damping for the AMB with the PID control strategy and 
analyzed the change rule of the support characteristic 
under the different PID parameters. Kim et al.[3] 
achieved to measure the force-current factor and the 
force-displacement factor by converging of adaptive 
filter. Mehmet et al.[4] and Lim et al.[5] presented the 
stiffness identification with multi-frequency excitation, 
which adopted the SPHS to avoid the superimposing 
peak of multi-frequency component. Bauomy et al.[6] 
investigated the response of the AMB-rotor system 
subjecting to a periodically time-varying stiffness. The 
stability of system near the simultaneous combined and 
sub-harmonic resonance was analyzed by the 4th 
Rung Kutta method. Sayyad et al. [7] presented the use 
of a variable stiffness type magnetic vibration absorber to 
control the vibration of a beam structure. Its principle is 
similar to the rotor vibration of AMB with variable 
stiffness in single DOF. Baloh et al. [8] proposed a 
method to measure the force-current factor and the 
force-displacement factor of AMB by adaptive 
estimation with least square algorithm. 

2. Problem Formulation 

In this study, the attention would be confined to 
solve two problems for measuring the stiffness and the 
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damping of the AMB-rotor system. 
1: Most aforementioned methods proposed for 

measuring the stiffness and the damping of AMB are 
based on the levitation model in single degree of 
freedom(DOF), which can not be suitably applied to the 
multi-DOF rotor systems. A multi-DOF modeled 
parameter identification method is needed. 

2: The multi-frequency excitation is a normal 
method for the parameter identification in AMB. It is 
desirable that each frequency component of the 
multi-frequency excitation should be strong enough so 
that the vibration responses of every component are vivid. 
However, the vibration peak due to superimposing all the 
frequency component may result in unacceptably large 
rotor vibration or cause force saturating of the AMB. 

In this paper, a multi-DOF rotor model based method 
is proposed for measuring the stiffness and the damping 
via multi-frequency excitation. Schroeder Phased 
Harmonic Sequences(SPHS) is adopted to achieve the 
lowest peak value of the multi-frequency excitation by 
means of appropriate selection for the relative phasing of 
each components, so that the possibility of the vibration 
displacement exceeding clearances or the bearing force 
reaching saturation is minimized. 

3. Identification of Stiffness and Damping with 
Multi-DOF Rotor model 

If the AMB control system adopts the decentralized 
control for each DOF, namely, the AMB s control 
current in a certain direction is decided only by the rotor 
displacement in its own direction, the AMB support can 
be equivalent to two mutually perpendicular 
spring-damping structures as shown in Fig.1, which is 
the so-called equivalent stiffness and equivalent damping. 
It is similar to the concept of the traditional mechanical 
bearing.  

Hereby, provided a rotor is supported by two AMBs, 
A and B, shown in Fig.1. The support of two AMBs are 
equivalent to 4 spring-damping structures in 4 directions 
respectively. The equivalent stiffness or the equivalent 
damping in a certain direction is decided only by the 
rotor displacement in its own direction respectively, 
namely, the spring-damping structures of every direction 
are independent each other. 

In Fig.1, O is the mass center of the rotor, the 
distance between the rotor mass center and two AMBs 
respectively are al and bl . The axis z is the rotating axis 
of the rotor. 

xak
xad

xbk
xbd

yak

yad

ybd

ybkax

bx

ay

by

al

bl

Fig.1 equivalent model forAMB-rotor system 
 
The rotor attitude vector can be defined 

as[ , , , ]T
y xX Yθ θ , where, ,X Y are the displacements 

of the rotor mass center in x and y directions, yθ and 

xθ are the angular displacements of rotor rotating around 
axis y and axis x. The positive directions of every motion 
are shown in Fig. 1. 

Otherwise, the rotor attitude vector also can be 
defined by the rotor location in the place of two AMBs as 
[ , , , ]T

a b a bx x y y , where, ,a ax y is the rotor!s location 
coordinates in the place of the AMB A, and ,b bx y is 
that of AMB B, as shows in Fig.1. 

The transfer relation between two types of the rotor 
attitude vectors can be given as follows 
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          (1) 

Firstly, the equations of rotor motion can be written 
in the form of stiffness and damping, (In this paper, only 
the radial supports of rotor are considered and the 
gyroscopic effect is neglectable ) 
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 (2) 

Where, m is the mass of rotor, J is the transverse moment 
of inertia. ,x yF F are the exciting forces respectively in 
direction x and y, and ,x yM M are the exciting 
moments around the x axis and y axis respectively. The 
equivalent stiffness of every directions are denoted 
respectively by , , ,xa xb ya ybk k k k , and that for the 
equivalent damping are , , ,xa xb ya ybd d d d .  

Eq.(2) is rebuilt by substitution of Eq.(1). The 
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following matrix equations can be obtained 
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By the Laplace transform, the frequency domain 
equations of Eq.(3) is 
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To simplify the expression, let 
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Eq.(4) is rebuilt by substitution of Eq.(5). It can be 
written as 
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Obviously, Eq.(6) is the linear equations of complex 
number with four unknowns, which are 

, , ,xa xb ya ybA A A A . In the parameter identification, 
[ ( ), ( ), ( ), ( )]T

x x y yF j M j F j M jω ω ω ω  are the excitation 
signals and [ ( ), ( ), ( ), ( )]T

a b a bx j x j y j y jω ω ω ω are the 
displacement responses. They all are known quantities. 
Therefore, , , ,xa xb ya ybA A A A  can be solved as 
follows 
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Finally, the equivalent stiffness and equivalent 

damping can be deduced as 
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Where, { }Re and { }Im respectively is to obtain the 
real part and imaginary part of a complex number. 

4. Schroeder Phased Harmonic Sequences 

The multi-frequency excitation is the normal method 
for parameter identification of AMB. For the AMB 
system, however, if all the frequency components of 
multi-frequency excitation are arbitrarily added together, 
the resulting response may produce unacceptably large 
rotor vibration or cause force saturating of the magnetic 
bearing, which may sharply increase the undesired 
nonlinearity of measurement. It is not a good solution to 
decrease the excitation amplitude of every frequency, 
because this will result in weak perturbation in the 
frequency domain and consequently increase the 
identification errors. 

Schroeder Phased Harmonic Sequences(SPHS)[11] 
can achieve the lowest possible peak value signal by 
means of superimposing these components with 
appropriate selection of the relative phasing, so that the 
possibility of the vibration displacement exceeding 
clearance or the bearing force reaching saturation is 
minimized. 
4.1 Composing of SPHS 

SPHS reduces the peak value by re-organizing the 
relative phasing of each harmonic. The Composing of 
SPHS is very simple and its expression is given by 

1

( ) 2 cos(2 / )
N

k k
k

x t P k t Tπ θ
=

= +å       (9) 
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Where, N is the number of harmonics, T is the period of 
the fundamental-harmonic, kP is the power of the kth 
harmonic.(if signal is cos(2 / )A t Tπ , its power is 

2 2A , so 2 kP is the amplitude of the kth harmonic, 

kθ is the phase angle of the kth harmonic.) 
In order to obtain the lowest peak value of 

harmonics superimposing, SPHS designates the phase 
angle of each harmonic as follows 

1

1
1

2 ( )
k

k i
i

k i Pθ θ π
-

=

= - -å        (10) 

Where, 1θ is the phase angle of the 
fundamental-harmonic, which can be assigned at will. In 
most applications of SPHS, 1θ will be assigned as 0 
orπ . Then, Eq.(10) can be modified as 

1

1

[[ ( ) ]]
k

k i
i

k i Pθ π
-

=

= -å          (11) 

Where, [[  ]] computes the largest integer not larger 
than their contents, namely, rounding operation. 

Eq.(11) can be further simplified if all of harmonics 
have the same amplitude, namely, it!s the flat-spectrum 
signal, / ( 1,2, , )iP P N i N= = 

, then 

2[[ / 2 ]]k k Nθ π=            (12) 

Eq(12) is the most simplified SPHS representation, 
which is widely used in practical applications. 
4.2 Illustrative Examples of SPHS 

In this section, the illustrative examples comparing 
the SPHS signal with the non-SPHS signal will be given.  

Let the frequency of the fundamental harmonic is 
1Hz, the amplitude of all harmonics are 1 unit, the 
number of harmonics are respectively given as N=25
50 100. For the non-SPHS signal, the phase angles of all 
harmonics are always defined as 0 ( 1,2, , )i i Nθ = = 

, 
which is called zero phase angle signal in this paper. The 
illustrative examples for comparing are shown from 
Fig.2 to Fig.7. 

It can be observed that the peak value of the zero 
phase angle signal sharply increases with the harmonics 
number growing. The peak value are about 20,40,80 for 
N=25 50 100 respectively. Contrastively, the peak value 
of SPHS increases gently in spite of the number of 
harmonics being doubled and redoubled. The peak value 
are about 9,12,15 for  N=25 50 100 respectively. By all 
appearances, if the zero phase angle signal is adopted, 
the possibility of the vibrationt exceeding clearance or 
the magnetic force reaching saturation will be greater. 

 
Fig.2 N=25 zero phase angle signal     Fig.3 N=50 zero phase angle signal     Fig.3 N=100 zero phase angle signal 

 
  Fig.5  N=25  SPHS signal          Fig.6  N=50  SPHS signal           Fig.7  N=100  SPHS signal 

 

5.  Experiment 

5.1 AMB Rig 

To evaluate the effectiveness of the proposed 
method, The experiments were carried out on a rig of 

AMB flywheel rotor system with vertical shaft structure 
as shown in Fig. 8. The axial support for the rotor is 
provided by a permanent magnetic bearing and the radial 
support by two radial AMBs, upper AMB and lower 
AMB. The equivalent stiffness and the equivalent 

ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 668



damping of two radial AMBs need measuring in 
expectation. Fig.9 is the drawing of rotor structure, 
whose parameters are that the rotor mass including 
flywheel is m=58.32kg, the transverse moment of inertia 
is J=1.878 2kg m· , the clearance of touch-down 
bearing is 0.2mm, 305mm,   222mma bl l= = . The 
force-current factor of the upper AMB is 326N/A, and 
that of the lower is 111.32N/A. The experiments were 
operated on the d-SPACE DS1103 with the decentralized 
PID control for rotor levitating. 

Firstly, for checking the vibration condition, the 
amplitude-frequency characteristics of the rotor vibration 
are carefully measured. When the excitation is imposed 
on the upper AMB, the amplitude-frequency 
characteristics of 4 directions in two radial AMB are 
shown in Fig.10 and Fig.11. It can be observed that there 
are some peaks of rotor vibration in the range of 
20Hz-60Hz. Among them, the vibration peaks in 26Hz 
and 54Hz are the two highest peaks, which may be, by 

estimate, the critical frequency(resonance frequency) of 
cylindrical mode and conical mode of rotor motion. 
Because the critical frequency values of every directions 
are different and close each other, so that their vibration 
peaks are close one another and crowd in the range of 
20Hz-60Hz. When the frequency is beyond 80Hz, the 
amplitude-frequency characteristic sharply descends 
close to zero. 

 
Fig.8 rig of AMB flywheel rotor system 

 
Fig.9 rotor structure drawing 

 

        
Fig.10 amplitude -frequency characteristic of upper AMB   Fig.11 amplitude -frequency characteristic of lower AMB 
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5.2 Test for SPHS Effectiveness 

In this test, the contrasts of the practical 
effectiveness between SPHS and zero phase angle signal 
will be tested in expectation. 

A rotating vector-like signal is injected into the 
control current of the upper AMB, that is, all the sine 
harmonics are injected into x direction and all the cosine 
harmonics are injected into y direction. Therefore, the 
magnetic exciting force in every harmonics frequency 
are all the rotating vector. The adopted multi-frequency 
excitation is a flat-spectrum signal in the range of 
1-200Hz. The fundamental-harmonic is 1Hz and N=200. 
In test, the amplitudes of harmonics are respectively set 
up as 0.4N, 0.8N, 1.2N, 1.6N. 

The experiments will record the practical rotor 
vibration orbit under the different amplitude of excitation. 
Fig.12 and Fig.13 are the response orbit for the excitation 
harmonics amplitude of 0.4N. Fig.14 and Fig.15 are that 
of 0.8N. It is clearly that the greater the excitation 
harmonic amplitude is, the more the vibration response 
orbit enlarges. However, the rotor orbit enlarging of zero 
phase angle signal is much more than that of SPHS. 

It can be observed in Fig.14 that, when the 
excitation amplitude reaches to 0.8N for zero phase angle 
signal, the rotor orbit in lower AMB is close 0.2mm and 
it meams that the rotor just comes into contact with the 
touch down bearing. It implies that the excitation 
amplitude can not be increased any more in the case of 
zero phase angle signal. 

 

Fig.12 response orbit of 0.4N with zero phase angle            Fig.13 response orbit of 0.4N with SPHS 

 

Fig.14 response orbit of 0.8N with zero phase angle         Fig.15 response orbit of 0.8N with SPHS 
 

Then, the excitation amplitude continues to be 
increased for SPHS. Fig.16 is the rotor orbit for the 
excitation amplitude increasing to 1.2N with SPHS and 
Fig.17 is for 1.6N. The vibration orbit enlarges with the 
excitation increasing. For SPHS, when the excitation 
amplitude reaches to 1.7N, the rotor evidently contacts 
the touch down bearing.  

It is concluded that, the upper limit of excitation 
harmonics amplitude is 1.6N for SPHS, and 0.8N for the 
zero phase angle signal. It proves that SPHS can 
efficiently minimize the peak value for the superimposed 
multi-frequency signal. 

 
Fig.16 response orbit of 1.2N with SPHS 

 

Fig.17 response orbit of 1.6N with SPHS 
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5.3 Measuring Stiffness and Damping with 
multi-frequency excitation 

According to Eq.(7)and (8), the equivalent stiffness 
and the equivalent damping in 4 directions of the AMB 
rig will be measured by the proposed method. 

Fig.18 is the measurement results of the equivalent 
stiffness under the excitation harmonics amplitude of 
1.6N. Because the equivalent stiffness in 4 directions is 
similar to each other, the corresponding direction of each 
diagram line for the equivalent stiffness is not denoted in 
Fig.18. The equivalent stiffness of AMB increases 
gradually along with the frequency rising, which is the 
same conclusion drawn in other academic 
literatures[5,9,10]. 

 Fig.18 shows that the measuring values have a 
visible drop in the band of critical frequency (resonance 
frequency) in the range of 20Hz-60Hz. The reason is that 
the rotor vibration is much great in the band of critical 
frequency. The greater the rotor vibration displacement is, 
the larger control current is needed. The AMB of the 
experiment rig adopts the differential mechanism. When 
the control current is less than the bias current, the 
magnetic force would be twice produced by both two 
sides AMB poles. Correspondingly, when the control 
current is more than the bias current, the magnetic force 
would only be produced by one pole of single side in the 
AMB. Consequently, the equivalent stiffness would drop, 
when the control current is more than the bias current. 
The same phenomenon have been observed in the 
reference[10]. 

Above 80Hz, the diagram lines of the equivalent 
stiffness is in disorder for identification errors due to the 
rotor weak vibrating. 

The measurement results of the equivalent damping 
are shown in Fig.19 with the excitation harmonics 
amplitude of 1.6N. It is visible that the equivalent 
damping values are very little in most frequency, and 
also is disordered for identification errors beyond 80Hz. 
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Fig.18 equivalent stiffness in 4 directions 

under 1.6N excitation 
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Fig.19 equivalent damping in 4 directions 

under 1.6N excitation 

6.  Conclusion 

In this study, a method for measuring the equivalent 
stiffness and the equivalent damping is proposed based 
on the multi-DOF rotor model. SPHS is adopted in the 
multi-frequency excitation to achieve the lowest possible 
peak value signal by means of appropriate selection for 
the relative phasing of each component without 
decreasing the amplitude of every components, so that 
the possibility of the vibration displacement exceeding 
clearances or the bearing force reaching saturation is 
minimized. 

Finally, the experiments indicate that the proposed 
method can correctly identify the equivalent stiffness and 
the equivalent damping of the AMB-rotor system. It 
really has the better practical utility for the dynamic 
analysis of AMB. 
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