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Abstract—Linear magnetic actuators are used in industry for
a wide area of applications. In order to reach high values for the
axial thrust force, the mover commonly features a permanent
magnet excitation. Thus, in combination with a slotted stator
layout, these actuators exhibit a high destabilizing stiffness in
the direction perpendicular to the direction of motion which
has to be compensated by the linear bearings. This paper
introduces a linear short stroke actuator with an integrated active
bearing force compensation to minimize the forces acting on the
mechanical bearings. The potential and limits of a bearing force
compensation is analyzed based on a short stroke linear actuators
with an E-shaped stator layout. It is outlined how far bearing
forces can be compensated even for simple actuator layouts.
Especially for linear drives oscillating with a high speed this
compensation can significantly reduce wear and thus improve
lifetime and efficiency as well as reduce the size of the mechanical
bearings.

I. I NTRODUCTION

As soon as the mover of a linear motor is equipped with a
permanent magnet (PM) excitation, attractive forces towards
the stator exist at least if the mover is not in a perfect central
position. With the need for high thrust forces, which can be
achieved with slotted stator layouts, these forces are becoming
a problem and a limiting factor for the bearing life time.
A common measure to reduce or ideally cancel these forces
is a symmetric design which can be tubular or planar. For
an ideally centric mover no resulting forces will occur, but
however, the often required dry running linear bush bearings
are a subject to wear what results by the time in an eccentricity.
While the wear increases the eccentricity, the bearing forces
rise even more because of the destabilizing stiffness of the
magnetic forces. This increases the friction and deteriorates
the efficiency.
This problem has been investigated in [1] for a pick and place
robot. There the attractive forces of the linear motor have
been counteracted passively by fixing PMs underneath a soft
magnetic plane.
In [2] the control of the rolling motion of a magnetically
levitated linear motor is investigated. Small additional electro-
magnetic actuators are used to stabilize the bearingless linear
motor.
Other examples for linear motors with active magnetic bear-
ings are given in [3] and [4]. In these cases the linear motor
is integrated in a free piston compressor and features two
active magnetic bearings to compensate for the radial motor
and gravity forces.

The objective of this paper is to analyze the potential and
limits to reduce bearing forces of a short stroke actuator
with single phase characteristics, based on E-shaped stator
elements. These actuators are intended to be used as oscillating
drives integrated into the respective target application which
could be a previously mentioned free piston compressor. Thus
it is assumed that a dry running linear bearing is available
in the system but need not be exposed to the large attractive
PM forces resulting from the magnetic actuator. However this
bearing allows to overcome axial positions where no or only
a weak compensation of the PM attractive forces is possible.
Hence, the second objective of the paper is to keep the system
as simple as possible.

II. SYSTEM LAYOUT

The system layout is given in Fig. 1. It features a two-
sided planar E-shaped stator with one or alternatively two
individual coils on each side. The planar mover is mounted
to an axis which features a bearing ring at each end. It holds
two permanent magnets (PM) on each side. The system is
designed to cancel the lateral forces when it is in a perfect
central position. External forces are assumed only to act along
the y-axis.
However, as soon as wear or initial eccentricities in thex-
direction cause an imbalance of the attractive forces, bearing
forces occur. To measure the bearing forces the bearing rings
run each in a radial force measurement gauge. Additionally the
axial and lateral position of the axis are measured to determine
the eccentricity and tilting angle.
The actuator has been designed to show a constant
force/current ratio iny-direction for a strokes = ±5mm
around the center position. Exceeding the maximal stroke
the force/current ratio decreases rapidly. Hence a mechanical
stop is required to keep the mover in the desired region of
operation.

III. B EARING FORCES

From the six degrees of freedom of the rigid body motion
one degree of freedom is actively controlled to perform the
required axial motion iny-direction. Two degrees of freedom
are stabilized passively by choosing the active width of the
mover in x-direction larger than the height inz-direction.
This refers to the linear motion inz-direction and the tilting
around they-axis. The tilting motion around thex-axis is
held by the mechanical bearings. Hence remain the attractive

ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 401



linear mechanical bearing ring

mover with PM

radial force sensor

(a)

(b)

axial and lateral
position sensors

A

A

B

B

C

C

D

D

x

y

z

origin of stator fixed

ϕ

stator coil

stator iron

coordinate system

Figure 1. (a) Top view and (b) front view of the investigated linear actuator
system with 4 phases labeled with A-D.

forces of the PMs inx-direction and the tilting around thez-
axis that require to be compensated actively. Remaining forces
that cannot be compensated are stabilized by the mechanical
bearings.

A. Wear of linear bearings

Compensating bearing forces is of main interest when the
actuator requires to be integrated into a system. Here a typical
requirement is often a small system size and high system
overall efficiency. For oscillating actuators this results in the
need for dry running bearings using a durable bearing material.
However in the end wear limits the life time of the mechanical
bearings. Assuming an oscillating actuator with the mean
mover velocity vm and the mean bearing pressurepm the
differential equation for wear is empirically deduced and given
as

ẇ(t) = K0pm(t)vm (1)

with the parameterK0 having the unitms2/kg which is the
wear parameter of the selected bearing material.
It is assumed that all forces acting on the bearing are negligible
compared to the resulting passive PM forces perpendicular to
the direction of motion. Hence, the mean bearing pressure

pm(t) = f(w(t)) (2)

is a function of the wear, which results in an eccentricity of
the mover.
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Figure 2. Model of static bearing forces under influcence of eccentricity and
tilting.

For the investigated symmetrical electromagnetic actuators
with small air-gap width, the forces perpendicular to the
direction of motion can be approximated to vary linear with
the eccentricity or wear respectively. The linear dependency
is defined by the stiffnesskx. This leads to the expression

pm(t) =
kxw(t)

nhbdbπ/3
(3)

for the mean bearing pressure. The installedn bearing rings all
have the same geometric dimensions of lengthhb and diameter
db. It is assumed that each ring bears only on one third of its
circumferential surface. Given an inevitable initial eccentricity
of w0 the wear results in:

w(t) = w0e
3K0kxtvm

ndbhbπ . (4)

From (4) follows, that for fixed geometrical dimensions of the
bearing rings the stiffnesskx directly influences the lifetime

tlife =
ndbhbπ ln

(

wmax

w0

)

3K0kxvm
. (5)

of the bearing, that is reached as soon asw reacheswmax.

B. Calculation of static bearing forces

According to Fig. 2 the equilibrium of the bearing forces
Fb1, Fb2 and the forceFx resulting from eccentricities inx-
direction

Fb1(y) + Fb2(y) = Fx(y) (6)

and the torque equilibrium

0 = Fb2(y)d+ Tz(y)− Fx(y)

(

d

2
− y

)

(7)

yield

Fb1(y) =
Fx(y)d+ 2Tz(y) + 2Fx(y)y

2d
(8)

Fb2(y) =
Fx(y)d− 2(Tz(y) + Fx(y)y)

2d
(9)

with a distanced between the two bearings. The torqueTz

and the forceFx are both dependent ony and are acting on
the center of the mover (Fig. 2).
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IV. SYSTEM MODEL

A. Force and torque model

The generalized forces

QF =









Fx

Fy

Tz









(10)

with respect toq = [x, y, ϕ]
T can be developed into a Taylor

series ati = 0 andx0 = 0 what results in the definition of the
forces in the form

QF = ML · i + MC (11)

if all terms of higher order with respect toi are neglected.
The termsML holds the coefficients linear to the coil currents
and termsMC is independent of the currents. The vectori
has the dimensionm× 1 with m being the number of phases.
The applied superposition requires the model to be linear with
respect to the phase currentsi. However, a nonlinear behavior
can occur in the direction of motiony. According to [5] the
linear model can be expressed as

Q = Tmi = QF − MC . (12)

The entries of the matricesML or TM andMC are calculated
using a finite element (FE) analysis of the investigated system
given in Fig. 1.

B. Dynamic model

Assuming current control a model based on applied phase
currents can be derived. For the given setup the mover of the
linear actuator should be operated a the pointx = 0 andϕ = 0
whereas the motion along they-axis has no limitation as long
as the previous set assumption of linearity with respect to the
current holds true.
Thus, the equation of motion

Mq̈ = Q − Ql. (13)

with the generalized mass matrixM, and the generalized load
force Ql = [0, Fly, 0]

T can be developed into a Taylor series.
Neglecting all terms with a higher order as one this results in

Mq̈ = ∂(ML i)
∂q

∣

∣

∣

x0,y,ϕ0,i0
q + ∂MC

∂q

∣

∣

∣

x0,y,ϕ0,i0
q+

+ML (x0, y, ϕ0) i + ∂MC

∂i

∣

∣

x0,y,ϕ0

.

(14)

The termMC is per definition independent of the currenti
and the termMLi can approximately be seen as independent
from x andϕ. With the stiffness matrix

kq(y) =
∂MC

∂q

∣

∣

∣

∣

x0,y,ϕ0,i0

(15)

and (12) the equation of motion in (14) can be simplified to

Mq̈ = kq (y)q + Tm0 (y) i. (16)
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Figure 3. Tm(q, θ) matrix of the actuator with four phases and
q = [x0, y, ϕ0]

T as a result from a FE analysis.

Neglecting all minor couplings in the stiffness matrix it results
in the structure

kq(y) =









kxx 0 kxϕ

0 kyy 0

kϕx 0 kϕϕ









(17)

showing a decoupling of the direction of motion from the other
directions. Thex- andϕ-coordinates are coupled withkxϕ and
kϕx. In general all entries ofkq are dependent ony.

V. BEARING FORCE REDUCTION

To reduce both bearing forces and to achieve the desired
motion in axial direction independently theTm matrix has to
fulfill the rank condition [5]

rank(Tm) = 3. (18)

Hence the system requires to have at least three phases. The
currents in these phases have to be controlled in a way to
generate the desired force and torque componentsQ. Thus
(12) requires to be solved fori what results in

i = inv (Tm) (q)Q = Km(q)Q (19)

with inv (Tm) being a generalized matrix-inverse ofTm.

A. Four coil actuator

The classic matrix-inverse can with (19) only be imple-
mented for a three phase system. For the investigated case
of four phases further constraints can be applied. In [6] this
problem is solved to achieve minimum copper losses and the
sum of all phase currents being zero. Hence the inverse ofTm

can be calculated as

Km(y) = A (TmA)−1 (20)
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Figure 4. Top view of the actuator system reduced to two coils.

with

A =

(

TT
m −

1

m
11T TT

m

)

. (21)

The Tm matrix for the investigated system is visualized in
Fig. 3, fulfills the rank condition of (18) and has the structure

Tm =









Tmx1 Tmx2 −Tmx1 −Tmx2

Tmy Tmy Tmy Tmy

Tmϕ1 Tmϕ2 −Tmϕ1 −Tmϕ2









(22)

with all entries dependent ony. Thus, the system described
in (16) can be separated into a subsystem describing the axial
motion and an independent subsystem concerning the bearing
forces. With this setup it is possible to cancel both bearing
forcesFb1 andFb2. As disadvantage remains the fact that the
system needs four separate phases. This requires a realization
with a minimum of four coils, what is double the amount as
originally required for they-direction motion.

B. Two coil actuator

Without the need for bearing forces reduction, the actuator
system of Fig. 1 would simply be constructed with two
coils connected in series, one on each side. Controlling the
two coils independently, this system allows a bearing force
reduction, too. The system with two phases is shown in
Fig. 4. This setup still requires with two full bridges a power
electronics of the same size as the star connected four-coil
system. However, the mechanical setup remains the same as
for an actuator without bearing force reduction.

In this case again aTm matrix can be calculated according
to (12). As a matter of fact the rank ofTm cannot exceed
2 in this case. A visualization of theTm matrix featuring
rank(Tm) = 2 is given in Fig. 5. Two actuating variables now
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Figure 5. Tm(q, θ) matrix of the actuator with two phases and
q = [x0, y, ϕ0]

T as a result from a FE analysis.

have to control the motion in the three directions ofq. The
structure of theTm matrix

Tm(y) =









Tmx −Tmx

Tmy Tmy

Tmϕ −Tmϕ









(23)

with all entries dependent ony and the stiffness matrix (17)
yield that the direction of motiony can again be independently
controlled from the bearing forces. To control the bearing
forces now only one actuating variable is available. The matrix
Km(y) is calculated pointwise numerically as the Moore-
Penrose pseudo-inverse ofTm(y) for each positiony.
The pseudo-inverse satisfies with the following four conditions

TmKmTm = Tm

KmTmKm = Km

TmKm is hermitian

KmTm is hermitian

(24)

most of the requirements to an inverse matrix. However, the
product

TmKm (25)

need not be identical to the unity matrix and indicates which of
the variablesx andϕ can be controlled with two phases. From
the visualization of this matrix product (25) in Fig. 6 it can
be concluded that they-position can be controlled all time,
whereas thex-position can be controlled for ally-positions
except the center, where only the angleϕ can be influenced.
From (16), (23) and (17) follows that a current in the form

iA = iy +∆i

iB = iy −∆i
(26)
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Figure 6. The product ofTmKm has a singularity point aty = 0.

allows to control the force iny direction with the current
componentiy and the bearing forces with the component∆i.
Consequently follows from (9) and (16) with (26) for the static
bearing forces

Fb1 =
dkxx+2kϕx+2kxxy

2d x+
2dTmx+4(Tmϕ+Tmxy)

2d ∆i+

+
dkxϕ+2(kϕϕ+kxϕy)

2d ϕ

Fb2 =
dkxx−2kϕx−2kxxy

2d x+
2dTmx−4(Tmϕ+Tmxy)

2d ∆i+

+
dkxϕ−2(kϕϕ+kxϕy)

2d ϕ.
(27)

Defining the movement inx-coordinate as eccentricitye
resulting from wear, the max. tilting angle can be expressed
as

ϕmax = arctan

(

d

e

)

≈
d

e
. (28)

Using the maximum tilting angle to compare the terms in-
fluenced byϕ in (27) shows a negligible influence of the
tilting angle on the bearing forces of the investigated actuator.
Together with the result of (25) follows that the bearing forces
can be reduced controlling the eccentricity inx-direction,
while the tilting can be neglected.

VI. OPTIMAL REDUCTION OF BEARING FORCES

For the two coil actuator follows from (27) that both bearing
forces cannot be canceled completely. Thus the function

f(y) = Fb1(y)
2 + Fb2(y)

2 (29)

is introduced to minimize both bearing forces simultaneously.
Solving

df
d∆i

(y) = 0 (30)

- 0.004 - 0.002 0.000 0.002 0.004
- 0.5

0.0

0.5

1.0

Fb1/Fb10

Fb2/Fb20

y/m

F
b
/
F
b
0

limited current
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results in

∆i(y) = −
d2kxxTmx + 4Tma (kϕx + kxxy)

2
(

d2T 2
mx + 4T 2

ma

) x−

−
d2kxϕTmx + 4Tma (kϕϕ + kxϕy)

2
(

d2T 2
mx + 4T 2

ma

) ϕ

(31)

with
Tma(y) = Tmϕ + Tmxy,

where again the term proportional toϕ can be neglected for
the investigated actuator.
The minimized bearing forces result in

Fb1,2(y) = ±
dTmx ∓−2Tma

d2T 2
mx + 4T 2

ma

·

· ((kϕxTmx − kxxTmϕ)x +

+ (kϕϕTmx − kxϕTmϕ)ϕ)

(32)

and will only disappear at selectedy positions as long as an
eccentricity is present. Figure 7 shows the analytic calculation
based on FE data of the resulting minimum bearing forces
with respect to the original bearing forces for the investigated
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system. It confirms the result derived from theTm matrix, that
it is not possible to cancel the bearing forces around the center
positiony = 0. The limit can be found from (32) as

y = ±

(

d

2
+

Tmϕ

Tmx

)

. (33)

Within this region only one bearing force can be reduced,
while the other one increases.

A. Influence of limits

The current∆i that is required to reduce the bearing forces
scales linear with the eccentricity. Thus, the maximum current
density (here equal to the rated current) defines for a required
force Fy, the maximum force reduction. Figure 8 shows the
required current in relation to the rated currentin to achieve
the force reduction of Fig. 7 with an eccentricity due to wear
of 0.1mm as thick line. The peak amount of roughly 40% of
the rated current is considered rather high. As an example the
dashed line in Fig. 8 shows a current restricted to only 5% of
the rated current, what leaves 95% of the rated current for the
actuation iny-direction. Even with this restriction the bearing
forces can considerably be reduced as shown in Fig. 7 with
dashed lines. The termsFb10 andFb20 are the bearing forces
if no compensation is applied.
To avoid any increase or overshoot of bearing forces in the area
around the poorly controllable center position, the current∆i
has to be set to zero in the interval given in (33) as shown in
Fig. 9. This results in a force reduction given in Fig. 10.

VII. C ONCLUSION AND OUTLOOK

In this paper the feasibility of compensating the bearing
forces resulting from the PM attractive forces of a linear
actuator are investigated based on analytical and numerical
models. Though the bearing forces are canceled for an ideally
centered position of the mover, wear and an eccentricity will
occur by the time. Thus, the possibility is examined to reduce
these emerging forces, to reduce the wear and increase the life
time of the bearing ring.
The FE analysis shows that the actuator can be linearized with
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Figure 10. Relative force reduction of two phase system with minimum
bearing forces (dashed) and no overshoot of bearing forces (thick).

respect to current and magnetic stiffness. The linearized model
has been derived and shows that at least four star connected
coils are required to cancel both bearing forces for ally posi-
tions completely. For the actuator with two phases the forces
can no longer be canceled, but a significant reduction can be
achieved. The required current and the limits of operation are
derived analytically. This results in an approximation of the
expected reduction of bearing forces.
The results show the feasibility of a bearing force reduction
even for an actuator featuring only two coils.
Currently, a prototype of the system is built to allow an
experimental validation of the presented results.
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