Basics of Superconducting Levitation and its Use in the Transport System SupraTrans II

Ludwig Schultz^{a,b,c}, Oliver de Haas^a, Dietmar Berger^b, Lars Kühn^{a,b,c}, Anne Berger^{b,c}, Tilo Espenhahn^{b,c} ^a evico GmbH Dresden, Germany, ^b IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany,, ^c TU Dresden, Germany, I.schultz@ifw-dresden.de

New means of urban transportation and logistics will become realistic with superconducting magnetic bearings using nanostructured bulk high temperature superconductors [1,2]. Superconducting magnetic levitation works passively stable without any electronic control but with attracting and repelling forces to suspend a vehicle pendant or standing upright from zero to high speed - perfect conditions for the idea of rail-bound individual transport with cabins for 4 - 5 passengers called on demand only. They will levitate noiseless over the track made of RE permanent magnets to the chosen destination saving energy and travel time [3]. A big step forward to this vision can be tested at Dresden. The world largest research and test facility for transport systems using HTS bulk material in the levitation and guidance system in combination with a permanent magnet track was put into operation. A vehicle for 2 passengers, equipped with linear drive propulsion, non-contact energy supply, second braking system and various test and measurement systems is running on an 80 m long oval driveway.

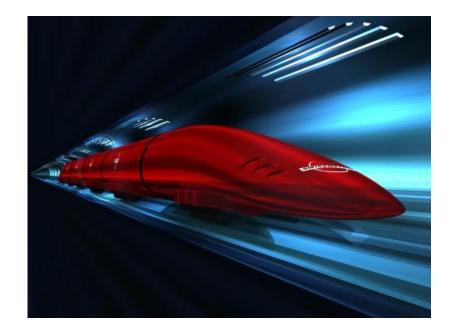
In the presentation the superconducting materials as well as the principle of superconducting levitation by flux pinning in high temperature superconductors will be described. An overview of the SupraTrans II research facility and future directions of superconductivity-based magnetic levitation and bearing for automation technology and transportation will be given.

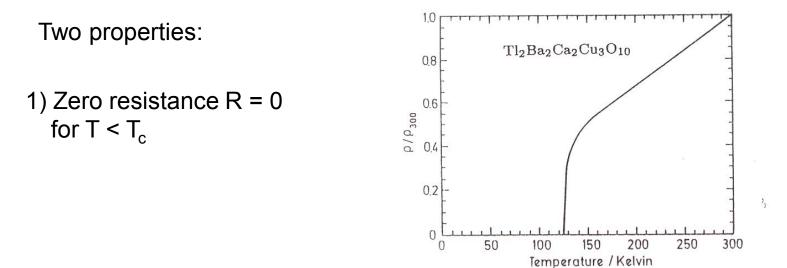
References:

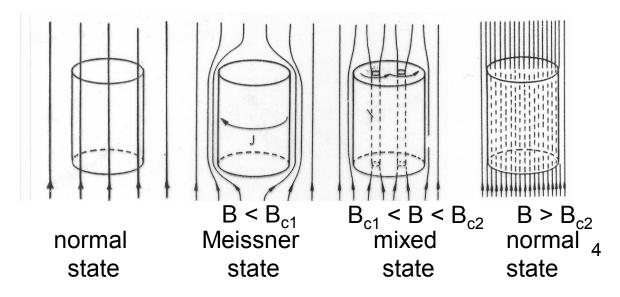
- 1. G. Fuchs, P. Schaetzle, G. Krabbes, S. Gruss, P. Verges, K.-H. Mueller, J. Fink, L. Schultz, *Trapped magnetic fields larger than 14 T in bulk YBa2Cu307-x*, Appl. Phys. Letters <u>76</u> (2000) 2107-2109.
- 2. S. Gruss, G. Fuchs, G. Krabbes, P. Verges, G. Stoever, K.-H. Mueller, J. Fink, L. Schultz, *Superconducting bulk magnets: Very high trapped fields and cracking*, Appl. Phys. Lett. <u>79</u> (2001) 3131-3133.
- L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Roehlig, H. Olsen, L. Kuehn, D. Berger, U. Noteboom, U. Funk, Superconductively levitated transport system - The SupraTrans project, IEEE Trans. Applied Superconductivity <u>15</u> (2005) 2301-2305.

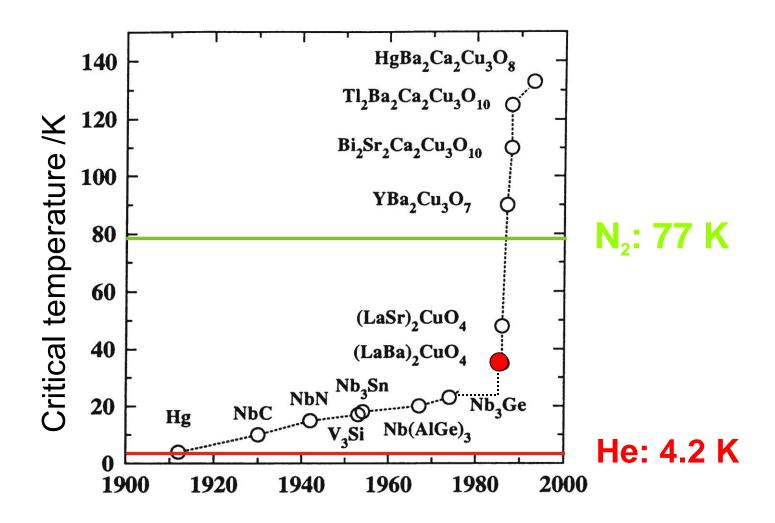
Basics of Superconducting Levitation and its Use in the Transport System SupraTrans II

Ludwig Schultz^{a,b,c}, Oliver de Haas^a, Dietmar Berger^b, Lars Kühn^{a,b,c}, Anne Berger^{b,c} and Tilo Espenhahn^{b,c} ^a evico GmbH Dresden, Germany ^b IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany ^c TU Dresden, Germany l.schultz@ifw-dresden.de

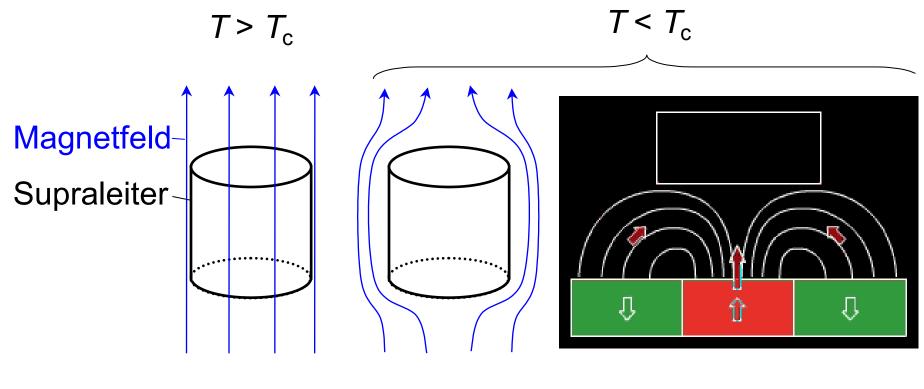

- **o** Suspension by magnetic fields
- **0** High temperature superconductors
- **o** The SupraTrans project
- **o** Energy-efficient applications


Levitation why?

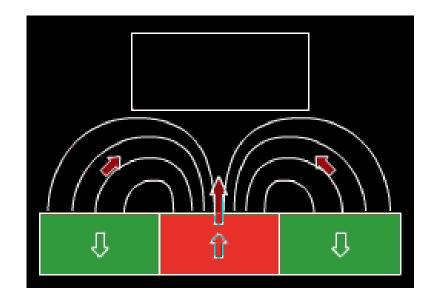

- Fascinating
- No friction, energy efficient
- Soft bearing
 - Incredibly comfortable
 - High velocity
 - Endless durability
 - New traffic concepts

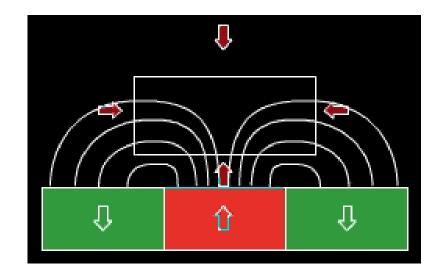

Superconductivity

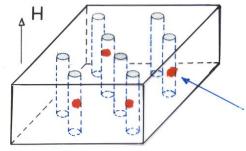
2) Magnetic field is pushed out of the superconductor



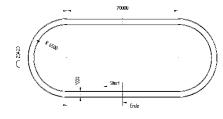
Development of the critical temperature T_c

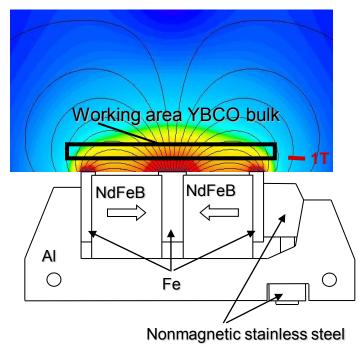



5


Superconductor in a magnetic field

 $H < H_{c1}$


Project SUPRATRANS


Goals:

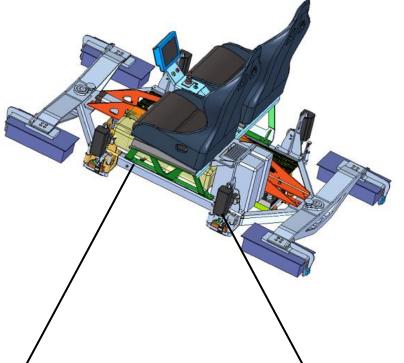
- qualification of the superconducting suspension technology for application in transport systems
- increasing size, increasing levitation forces
- construction of a demonstrator
- system integration for propulsion, safety, logistics, power transfer, etc.

SupraTrans II

Permanent magnetic rail

|--|

Magnetic design	
Architecture	3 pole - flux collector
Pole distance	48 mm (centre-centre)
Perm. magnets	NdFeB N40
B _r	1276,8 mT
Dimensions (mm)	50 x 50 x 40
Weight	750 g
Magnets / rail	40 30 kg/rail
Flux collector	Steel - softmagnetic
B _{surf}	1.1 T

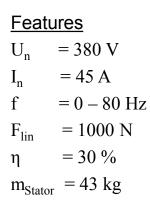

vehicle

Spezification

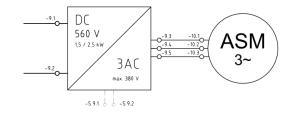
- Total weight = 400 kg
- Air gap = 10 mm
- 2 braking system
- a = 1m/s²

v = 20 km/h

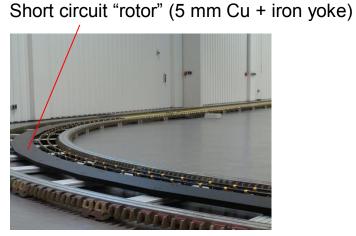
4 cryostats

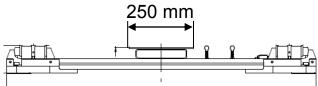

- ■24 YBCO bulks/cryostat
- •YBCO area = 500 cm²/cryostat
- ■Force density = 4 4.5 N/cm² @ 8 10 mm
- Levitation force = 8 9 kN @ 8 10 mm

4 x lift-/ brake system

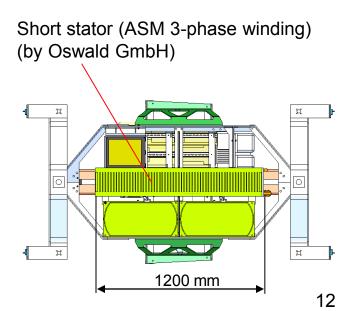

- liftsystem brings vehicle into cooling position
- auxiliary brake

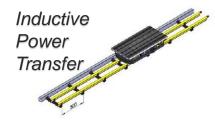
Propulsion system

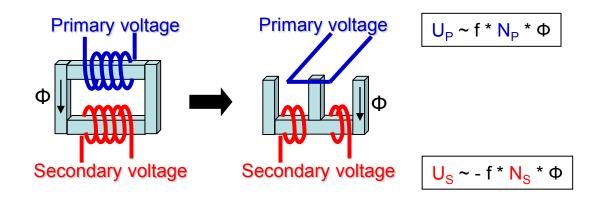


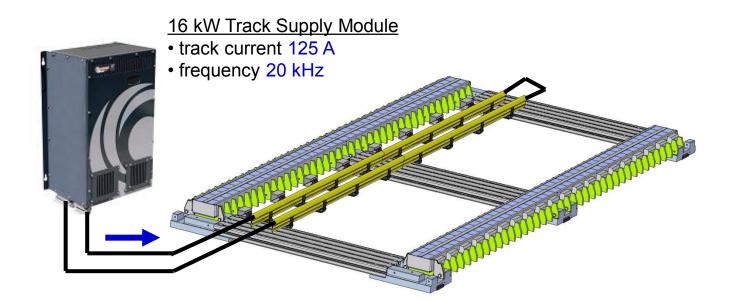


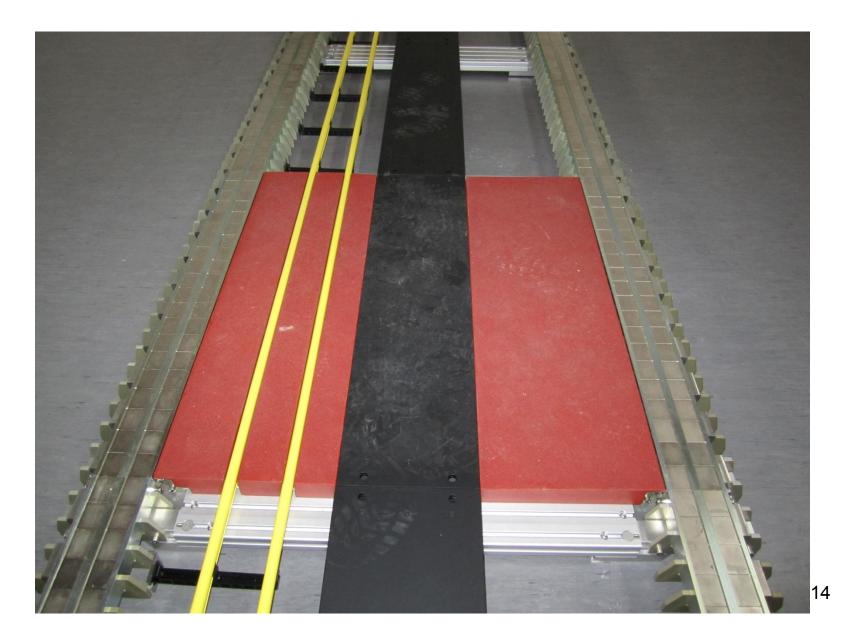
Asynchronous short stator linear motor




<u>Track</u>


Vehicle





Energy supply

Inductive power transmission (non-contact) transformer principle

Preliminary conclusions

- Stable superconductive suspension on a magnetic track is possible
- High energy efficiency due to zero friction
- Noiseless and extremely soft motion
- Remaining issues:
 - Optimization of the permanent magnet track in relation to the shape of the superconductor:
 - reduction of size, weight, costs
 - cheaper magnets
 - Electromagnetic track, crossings, turnout switches
 - Non-liquid cryocooler
- Next demonstration projects:
 - people transportation
 - automation technology (cooperation with Festo)
 - hyper gravity human centrifuge

Track-bound individual urban transportation

• Requirements:

- magnetic railway
- cabins for 4 or 5 persons
- central control
- central power supply (for the drive)
- low energy consumption
- fast turnout switches

Advantages:

- individual mobility
- no parking space problem
- effective use of vehicles
- fast (compared to mass transportation)
- service on demand, no fixed schedule
- continuous night service
- personal security

SupraTrans II

Superconducting magnetic levitation

Advantages for the construction of transport systems:

- ✓ Passively stable levitation
- \checkmark Environmentally friendly, no CO₂ emission
- ✓ Absolutely noiseless
- ✓ 24 h use with just one cryostate filling
- \checkmark Ice on the track: no problem

Large Human Centrifuge: System Considerations

- Gravity: 1 g vertically
- Rotation: 1 g horizontally (centrifugal force) rim speed must be proportional to SQR (radius) (i.e.: about 90 km/h at 150 m diameter)
- Resulting gravity: 1.4 g under 45 degrees
- Main problem for human beings: Coriolis force, proportional to SQR (1/radius) at constant centrifugal force
- Our proposal: mobile home on a circular magnetic track (diameter: 150 m) with superconducting suspension (soft bearing, comfortable, noiseless)

Thank you for your attention

Acknowledgements

DFG, SMWK, SMWA, SAB, BMBF

G. Fuchs, K. Nenkov, B. Holzapfel, G. Krabbes