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Abstract—This paper deals with topology optimization of the
rotor of a flywheel energy storage system (FESS). For isotropic
materials the constant stress disc (CSD) is the best choice
to maximize energy density. Modern FESS are manufactured
of fiber reinforced plastics (FRP), due to their high specific
strength. Because of the transverse isotropic material description
the optimal rotor topology changes. A genetic algorithm (GA)
for nonlinear integer problems will be used to find the best
rotor structure which can be manufactured within one filament
winding process.

I. INTRODUCTION

Flywheel energy storage systems represent an ecologically

and economically sustainable technology for decentralized

energy storage. Compared to other storage technologies such

as e.g. accumulators, they offer longer life cycles without

performance degradation over time and usage and need almost

no systematic maintenance. To achieve a high energy density

FESS rotors are usually manufactured of FRP, which enables

high tip speeds. For stable operation and minimal friction

loss high-end FESS are supported by magnetic bearings. To

minimize drag the rotor operates in a vacuum chamber. An

overview and the requirements on the individual components

of a FESS are given in [1].

The aim of rotor design is to maximize the energy density κ
which is defined as the kinetic energy per unit mass

κ =
1

2
IzΩ

2
max

m
(1)

with the moment of inertia Iz , the maximum angular velocity

Ωmax and the rotor mass m. The maximum possible energy

density for an isotropic material is equal to the materials

specific strength

κmax =
X

ρ
(2)

where X denotes the ultimate strength and ρ the density.

Moreover the reached energy density depends on the geometry.

The geometry factor is defined as

K =
κ

κmax

(3)

and is a measure for the cost-effectiveness of the rotor shape,

because a higher value of K leads to a higher amount of stored

energy at constant mass. The values of K for different rotor

geometries are listed in Table I, where a poisson’s ratio of

ν = 0.3 was assumed.

Table I
GEOMETRY FACTOR K FOR DIFFERENT ROTOR CROSS-SECTIONS FOR

ISOTROPIC MATERIAL WITH ν = 0.3 (CF. [2])

Flywheel geometry cross section K

theoretical constant stress disc 1.000

real constant stress disc 0.7-0.98

conical disc 0.7-0.95

constant thickness disc 0.606

thin hollow cylinder 0.5

disc with rim 0.4-0.5

pierced constant thickness disc 0.303

When an isotropic material is assumed, the shape factor K
equals one when the equivalent stress reaches its maximum

value in every point of the structure with respect to some stress

criterion, which corresponds to the constant stress disc. Due

to the tri-axial stress state the contour of the CSD cannot be

derived analytically. Some suggestions are given in [3], where

an analytical function for the CSD is described. In the range of

r ≤ βrRo the contour is given as a function of the normalized

radius χ = r/Ro

Hu(r) = hc

{
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(4)

for r > βrRo and h < hmax

Hu(r) = hce
−Bβ2

r
2
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(5)

and and in the case of r > βrRo and h ≥ hmax

Hu(r) = hmax = αrhce
−Bβ2

r
2 (6)

with the radius

βr =

{

2

Bαr
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−
1 + ν

1− ν
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(7)

and the abbreviations α = αr − 1 and χ = χ − βr and the

constants B, αr, hc and ar. The described function will be

used as reference solution in chapter IV-A.

As a result of (2) carbon and glass fiber reinforced plastics

(CFRP, GFRP) are the material of choice for high performance

FESS, because of their high strength and low density. Fig. 1
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Figure 1. Energy density of a disc as function of ratio inner to outer radius
for different materials

presents the energy density of a disc as a function of ratio

inner radius Ri to outer radius Ro for different materials and

demonstrates the potential of those materials in comparison to

aluminium. The calculation was done by using the material

described in chapter III-A. The maximum energy density is

reached when Ri/Ro is close to 1. Then the radial stress is

almost zero and the fibers are fully loaded in circumferential

direction. Vice versa, at smaller values the radial stress is rather

high and therefore the load is transverse to fiber direction.

Due to easy manufacturing mostly a simple cylinder is used

like in [4], where the rotor is assembled of rings with different

materials. It concludes that stiffer materials at increased radius

leads to a decrease of radial stresses due to the different

radial expansion. In [5] also a rectangular rotor shape is used

which consists of several rings press-fitted into each other.

This results in compressive residual stresses and therefore an

increase of energy density. A low cost flywheel for rural energy

storage is described in [6]. A kind of constant stress disc is

used as rotor shape, which is legitim due to the quasi-isotropic

rotor made of short fiber composites which is molded and than

milled.

Usually for topology optimization the SIMP-method is used,

which is a challenge when inertia loads are applied (cf. [7]).

In [8] a turbine disk profile is optimized by metamorphic

development. For this purpose the strain energy density is

evaluated at the rotor surface, which decides if the structure

will grow or degrade in a special position. Here only isotropic

materials are considered and the objective function is not

useful for flywheel applications. [9] uses an injection island

genetic algorithm to optimize the rotor topology and different

algorithms are compared to each other. Both papers only

consider isotropic materials.

There are some subtle constructions in literature. A thick

hollow cylinder is used as inertia in e.g. [10]. This cylinder is

supported by a hub which is connected to the shaft. The focus

lies on the hub design which is formed to enable an operation

between first and second bending frequency.

II. ASSUMPTIONS AND OVERVIEW

Material transitions are always a soft spot. So this work will

build up a rotor structure that is made of a single material

which can be manufactured within one filament winding

process. The shaft is planned to be shrink-fitted into the

Table II
MATERIAL PROPERTIES OF CFRP AND ALUMINIUM

CFRP Al

Eϕ longitudinal young’s modulus, GPa 145.38 70

Er transverse young’s modulus, GPa 9 70

Gϕr shear modulus in ϕr-plane, GPa 4.97 26.9

νϕr poisson’s ratio ϕr 0.24 0.3

νzr poisson’s ratio zr 0.27 0.3

ρ density, kg/m3 1535.5 2700

X longitudinal tensile strength, MPa 2179 275

X′ longitudinal compressive strength, MPa 1702 275

Y transverse tensile strength, MPa 98 275

Y ′ transverse compressive strength, MPa 210 275

S shear strength, MPa 115 275

Figure 2. Discretization of the rotor geometry and parameter definitions

composite rotor. This leads to compressive residual stresses

in radial direction. For the sake of simplicity the shaft will

be neglected in the following optimization, which is a conser-

vative assumption in strength analysis. Also eigenfrequencies

and eigenmodes will not be considered. All calculations where

done with a safety margin of 2.

In chapter III the finite element model and the used GA

are described. The optimization results for isotropic as well

as transverse isotropic materials are presented in chapter IV.

Chapter V concludes the paper.

III. OPTIMIZATION PROBLEM

A. Finite Element Model

The properties of the applied aluminium and unidirectional

CFRP with fibers oriented in circumferential direction are

summerized in Table II. Together with (8) the elasticity tensor

can be set up

Grz =
Er

2(1 + νrz)
,

νrϕ
Er

=
νϕr

Eϕ

, Ez = Er,

Gϕz = Gϕr, νϕr = νϕz, νrϕ = νzϕ, νrz = νzr.

(8)

For aluminium the von Mises yield criterion and for the CFRP

the Puck criterion is used ([11], [12] and [13]).

The stress calculation was performed with an axisymmetric

finite element model. Quadriliteral elements with a square

cross section of length le and linear shape functions were

applied. The discretization method can be seen in Fig. 2. The

z-axis is the axis of rotation and the rotor is assumed to be

symmetrical with respect to the rϕ-plane. The rotor contour

consists of the upper Hu(r) and the lower contour Hl(r). The
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optimization was carried out by the use of the rate of change

of the contour as optimization variable

Hu(r) = Hu,0 +

r∫

0

dHu(η)

dη
dη

Hl(r) =

r∫

0

dHl(η)

dη
dη

(9)

where η is an integration variable. Thereby, bounds can be

applied on the optimization variables to avoid large steps. The

rotor is discretized with N elements along the radial direction

and also the heigth can only change in steps of le, which leads

to the approximation of the contour

Hu

(

i≤
r −Ri

le
<i+1

)

≈




hu,0 +

N−1∑

i=1

(hu,i − hu,i−1)
︸ ︷︷ ︸

∆hu,i




 le

Hl

(

i≤
r −Ri

le
<i+1

)

≈






N−1∑

i=1

(hl,i − hl,i−1)
︸ ︷︷ ︸

∆hl,i




 le

(10)

where hu,0, ∆hu,i and ∆hl,i are integer values. hl,0 is zero

to keep the geometry in the origin.

The vertical displacement of the nodes along the r-axis was
set to zero to ensure a symmetric rotor. Also the horizontal

displacement along the z-axis was set to zero. The applied

inertial load is the volume force due to the angular velocity

FVol =

∫

m

rω2 dm (11)

where ω is an arbitrary angular velocity.

The stresses were evaluated in the nodes and afterwards

averaged over the whole element to smooth the results and

avoid numerical singularities. To evaluate the stress criterion

a stress ratio R where introduced

σ∗ij =
σij

R
(12)

where σ∗ij denotes the stress on the failure surface of the

appropriate criterion and σij the actual stress state. The stress

state is within the failure surface if 0 ≤ R < 1 is fulfilled.

Higher values of R means failure. Due to linear analysis the

angular velocity, which leads to failure of the structure with a

safety margin S can be derived as

Ωmax = ω

√

1

S ·max {R (ω)}
. (13)

Together with (1) the maximum energy density of a given

structure can be calculated.

B. Optimization Algorithm

Due to the finite element discretization the optimization

variables are integer values. This leads to the disadvantage

that calculating an optimization step with a gradient based

method is not possible. Therefore a genetic algorithm which

can handle integer variables is used. The fitness function is to

maximize the energy density

min
x

{−κ} (14)

where x is the vector of optimization variables presented later.

In the following the function ga(. . .) of MATLAB R2010b

with some adaptions will be used.

As a start a set of unique individuals of the optimization

variables hu,0, ∆hu,i, ∆hl,i in (10) is generated by a creation

function and the energy density is evaluated. A number of elite

individuals are guaranteed to survive into the next generation.

A selection function chooses parents which are then combined

by a crossover function to childrens for the next generation.

Afterwards the set of individuals for the following generation

is filled with randomly created individuals by a mutation

function. This procedure is done till the algorithm stops, which

is the case if no improvement is reached within a choosen

number of generations.

The creation function and mutation function are identical

and are creating a random unique population, which fulfills

the bounds and constraints and do not lead to intersections of

the geometry. Thus it is not necessary to solve a constraint

optimization problem. The crossover function randomly com-

poses two parent genes. The parent individuals are chosen by

a stochastic universal sampling as a selection function.

In the following examples the population size was 400 and

ten elite individuals were used. Any other options where left

default.

IV. OPTIMIZATION RESULTS

A. Isotropic Material - Constant Stress Disc

To validate the functionality of the algorithm in a first step

the CSD will be calculated. For this purpose the lower contour

and the inner radius were set to zero

Hl(r) = 0, Ri = 0 (15)

and the upper contour is optimized. The goal is a fully stressed

structure. The vector of optimization variables is then

x =
(

hu,0,∆hu,1, . . . ,∆hu,N−1

)T

(16)

with the length N which was chosen to be 100. The optimiza-

tion bounds were defined as

−2 ≤ ∆hu,i ≤ 2 (17)

so the maximum vertical variation was allowed to be 2

elements within one radial element step. To avoid intersections

with the r-axis the upper contour must fulfill

Hu(r) > 0 . (18)

The maximum possible energy density with aluminium

defined in Table II is

κmax =
X

S · ρ
= 14.15

Wh

kg
(19)

with a safety margin of 2.

The algorithm stopped at generation 69 and the result is

shown in Fig. 3 and compared to the suggestion presented
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κ = 11.2555 Wh/kg (K = 0.79601)

0 0.25 0.5

Figure 3. Optimization result with aluminium; Geometry factor K = 0.80;
Suggestion of [3] for the CSD with B = 5.25, αr = 4.89, hc = 0.39 and
ar = 0.0244; Contour plot of von Mises yield criterion

in [3] with the parameters B=5.25, αr=4.89, hc=0.39 and

ar=0.0244. The results are in good agreement. On the axis of

rotation the heigth is Hu(r=0)/Ro=0.18 and then decreases

to a minimum of Hu(r/Ro=0.9)/Ro=0.02. At the outer

radius a rim is formed with a height of Hu(r=Ro)/Ro=0.09.
The reached energy density is 11.26 Wh/kg, which corre-

sponds to a geometry factor of K=0.80.

B. Transverse Isotropic Material

Now also the lower rotor contour is unconstrained and

optimized and the inner radius is no longer zero. The optimal

rotor shape in the case of FRP is a thin cylinder with fibers in

circumferential direction. Here the radial stress is very small

and the whole load is carried by the fibers. For this reason an

optimization algorithm will always try to converge to a thin

cylinder. Therefore it will be requested that the rotor has a

minimum radial thickness in the midplane

Hl(r ≤ Rm) = 0 (20)

with Rm as the minimal outer radius at z = 0. To achieve this

the appropriate values of ∆hl,i are removed from the vector

of optimization variables, which yields to

x =
(

hu,0,∆hu,1, . . . ,∆hu,N−1,∆hl,M , . . . ,∆hl,N−1

)T

(21)

with

M =

⌈

N ·

(

1−
Rm −Ri

Ro −Ri

)⌉

(22)

where ⌈. . .⌉ is the ceil-operator.

Again 100 elements along the r-axis were used. Due to the

manufacturing process the contour should increase monoto-

nically, which is fulfilled by defining the optimization bounds

as

0 ≤ ∆hu,i ≤ 4

0 ≤ ∆hl,i ≤ 4 .
(23)

To achieve a reasonable rotor the following constraints where

defined

Ri

Ro

= 0.3 ,
hu,0

hmax

≥ 0.3 ,

Rm −Ri

Ro −Ri

≥ 0.3 , Hu(r) > Hl(r)

(24)

Figure 4. Optimization result after 83 generations with CFRP;
κ = 66.43 Wh/kg; Contour plot of Puck criterion

with

hmax =
Hu(r = Ro)

le
. (25)

The optimization result after 83 generations is shown in

Fig. 4. An energy density of κ = 66.43 Wh/kg is reached.

Due to the tendency to converge against a thin hollow cylinder,

the constraints in (24) are active. The upper contour is flat

starting from Ri, then a radius with a subsequent high slope

is formed. Contrary Hl increases very fast and then flattens,

therefrom in the shaft region, mass will be removed. In spite

of decreasing moment of inertia the radial stress is reduced

in this region enabling higher angular velocities. Here the

highest specific stress is still in radial direction. The cantilever

part is forming a hollow cone and the stresses are shifted in

circumferential direction. Furthermore the slope of the upper

contour leads to a larger radius of inertia and therefore an

increase of performance.

Fig. 5 demonstrates the influence of the parameters listed
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κ = 70.39 Wh/kg
Ri

Ro

= 0.2;
hu,0

hmax

= 0.2;
Rm − Ri

Ro − Ri

= 0.3

κ = 70.29 Wh/kg
Ri

Ro

= 0.3;
hu,0

hmax

= 0.2;
Rm − Ri

Ro − Ri

= 0.3

κ = 72.33 Wh/kg
Ri

Ro

= 0.4;
hu,0

hmax

= 0.2;
Rm − Ri

Ro − Ri

= 0.3

κ = 64.56 Wh/kg
Ri

Ro

= 0.2;
hu,0

hmax

= 0.3;
Rm − Ri

Ro − Ri

= 0.3

κ = 66.03 Wh/kg
Ri

Ro

= 0.3;
hu,0

hmax

= 0.3;
Rm − Ri

Ro − Ri

= 0.3

κ = 69.95 Wh/kg
Ri

Ro

= 0.4;
hu,0

hmax

= 0.3;
Rm − Ri

Ro − Ri

= 0.3

0

0.25

0.5

κ = 59.83 Wh/kg
Ri

Ro

= 0.2;
hu,0

hmax

= 0.4;
Rm − Ri

Ro − Ri

= 0.3

κ = 61.34 Wh/kg
Ri

Ro

= 0.3;
hu,0

hmax

= 0.4;
Rm − Ri

Ro − Ri

= 0.3

κ = 65.16 Wh/kg
Ri

Ro

= 0.4;
hu,0

hmax

= 0.4;
Rm − Ri

Ro − Ri

= 0.3

Figure 5. Optimization results for different sets of contraints; (Rm −Ri)/(Ro −Ri) = 0.3 and different values for Ri/Ro and hu,0/hmax
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κ = 74.3 Wh/kg

0 0.25 0.5

Figure 6. Optimization result after 84 generations with CFRP and non-
monotonic rotor shape; κ = 74.3 Wh/kg; Contour plot of Puck criterion

in (24). Ri/Ro and hu,0/hmax were varied with 0.2, 0.3 and

0.4 while (Rm−Ri)/(Ro−Ri) was held constant at 0.3. The

maximum value of the height hmax decreases with increasing

Ri/Ro. In general the energy density increases with Ri/Ro. κ
increases with decreasing values of (Rm−Ri)/(Ro−Ri) and
hu,0/hmax. Low values of the height constraint are leading to

a thin structure. The energy density can further be increased

when the condition for monotonicity in (23) is dropped. In

Fig. 6 the optimization result with

−4 ≤ ∆hu,i ≤ 4

−4 ≤ ∆hl,i ≤ 4
(26)

as constraints, leading to a non-monotonic rotor shape, is

shown. The upper contour was fitted to a polynomial of 12th

order and the lower contour to one with 7th order to get

a smoother rotor shape. One can see that the height at the

beginning hu,0 is rather low and the contour begins decreasing,

forming a large radius to the cantilever. Furthermore the

maximum height is smaller which leads to a more compact

and plump structure. The lower contour is still monotonically

increasing while the upper contour formes a tilted "S". Due to

the larger radius at the beginning of the cantilever the energy

density can be increased.

V. CONCLUSION

This paper presents the optimization of a FESS rotor by

GA. A finite element model was used to find the shape of the

CSD and furthermore a CFRP rotor was optimized for high

performance FESS.

Improvements can be done by introducing triangular ele-

ments to get a smoother contour by avoiding sharp corners

in the mesh. Also high numerical stresses can be avoided by

advanced stress smoothing methods.

The optimized rotor shape can be manufactured just as a

disc shaped rotor. The fibers are immersed in a resin bath and

then wound on a mandrel. Care has to be taken in the area

of the cantilever. When the inclination is too high, slipping

of the fibers from the mandrel can occur. When the resin is

cured, the mandrel can be removed. The whole rotor can be

manufactured within one process or the outer contour can be

filled and then formed by turning.
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