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Abstract—Active magnetic bearings (AMBs) are widely applied
to support high-speed rotating machineries, especially in special
environment. Identification is a useful method to obtain the
mathematical model of an AMB system. Frequency domain
subspace identification method (FDSIM) is an attractive iden-
tification technique. However, in practice one usually expects
that the identified model possesses some properties, for example
stability. FDSIM cannot ensure these expected properties. This
paper firstly proposes a novel subspace identification method,
FDSIM-λ. This method can guarantee that the resultant model
possesses predefined poles. Moreover, an optimization procedure
is introduced to obtain the optimal poles based on FDSIM-λ, the
initial estimation of system poles and constraints on the system
poles. The proposed method is then applied to identify an AMB
system and validated by the experiments on a real AMB system.

I. INTRODUCTION

Compared with conventional bearings, active magnetic bear-
ings (AMBs)[1], [2] possess several attractive advantages,
such as no friction, no need of lubrication, and the ability
of long-term high speed running. Therefore AMBs are widely
applied to support high-speed rotating machineries, especially
in special environment. Nevertheless, for each application
case, the AMB system should be specifically designed, in-
stalled and adjusted. This procedure is quite costly and time-
consuming. The mathematical model of an AMB system plays
an important role in designing and adjusting the whole system.
The models of parts in an AMB system can be computed
numerically [1], [2], [3]. However, the practical parts are
usually so complex that the computational models of flexible
rotors and AMB systems are not precise enough.

Identification is the procedure of estimating the model of a
system based on measured input-response data of this system.
It is an useful method to obtain the system model. From the
viewpoint of control system analysis, an AMB system with
a flexible rotor possesses several special features. First, it is
well-known that an AMB system is open-loop unstable. This
obstructs the application of most well-developed identification
methods where the stability of system is assumed. Second,
the flexible rotor lacks of internal damping, which results in a
series of numerical problems in computation. Based on these
reasons, frequency domain test and identification are often
utilized to attain the model of an AMB system.

Frequency domain subspace identification method
(FDSIM)[4], [5], [6] is an attractive identification
technique and an improved version of FDSIM proposed
in [5] and the so-called w-operator is introduced in
this method to improve computational aspects. In this
method, the continuous-time state space description
(A,B,C,D) of a system is utilized and the system
model is then transferred to a w-domain description
(Aw,Bw,Cw,Dw). The column space of the observation

matrix
[
C>w (CwAw)

> · · ·
(
CwA

i−1
w

)>]>
, i ∈ N is

estimated based on frequency domain response (FDR) data
and estimation of the model (Aw,Bw,Cw,Dw) can be
attained. The FDSIM possesses excellent numerical stability
and generality, therefore it is applied to many identification
problems, including the region of AMB systems[7].

However, the FDSIM possesses a serious defect, namely no
prior knowledge and assumption is involved in the identifica-
tion. In other words, the stability and any other properties of
the resultant model cannot be guaranteed by this method. To
overcome this defect, efforts on subspace identification method
with guaranteed stability are reported [8], [9]. Nevertheless,
as mentioned, an AMB system is open-loop unstable and the
damping ratios of the bending modes are relatively small,
these characteristics obstruct the direct application of these
modified methods. It is important to notice that the poles of
an AMB system can be roughly estimated by the numerical
computations and the FDR measurements. In this paper, a
novel FDSIM method is proposed, the proposed method
ensures that the resultant model possesses predefined poles.
Then, an optimization procedure is introduced to modify the
estimated poles. The initial estimation of the system poles
and constraints on the system poles will be introduced in this
optimization procedure. In this way, the properties of the poles
of the resultant system can be ensured. The proposed method
is then applied to identify an AMB system and validated by
the experiments on a real AMB system.

In this paper, the notation † is used to denote the Moore-
Penrose generalized inverse of a matrix, ‖◦‖ denotes the
Frobinius norm of a matrix. The notation R(m1,m2) (U)
reflects the matrix composed of the m1-th to m2-th rows
of matrix U, ⇔ denotes that two optimization problems
are equivalent. For matrixes (A,C) and some integer i, the
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generalized observation matrix is defined as

Go (C,A, i) =


C

CA
...

CAi−1

 . (1)

Similarly, for (A,V) and i, the generalized input matrix is
defined as

Hi (V,A, i) =
[
V AV · · · Ai−1V

]
. (2)

II. SUBSPACE IDENTIFICATION WITH PREDEFINED POLES

A. Frequency domain subspace identification method

For a system (A,B,C,D) with A ∈ Rn×n,B ∈
Rn×h,C ∈ Rm×n,D ∈ Rm×h, for some i ≥ n, the
generalized observation matrix Go (C,A, i) plays the center
role in the subspace identification methods [4], [5], [6]. More
specifically, in the subspace identification methods, the column
space of Go (C,A, i) can be estimated based on the time
domain or frequency domain measurement of system inputs
and outputs. Then the system matrixes (A,B,C,D) are
evaluated based on the estimation of Go (C,A, i). As an im-
provement of the standard FDSIM, [5] introduced the so-called
w-operator to prevent numerical illness or ill-condition. This
paper concentrates on the w-FDSIM (namely FDSIM with w-
operator) and this paper mainly focuses on the evaluation of
w-domain system matrixes (Aw,Cw) based on the estimation
of column space of Go (Cw,Aw, i). The estimation of the
column space of Go (Cw,Aw, i) and evaluation of (Bw,Dw)
are realized by the algorithm proposed in [5].

B. FDSIM with predefined poles

In the standard w-FDSIM, the column space of the ob-
servation matrix Go (Cw,Aw, i) is estimated as a matrix
Ûn, which is constructed based on FDR measurement. The
estimations Ĉw and Âw are evaluated directly by

Ĉw = R(1,m)

(
Ûn

)
, (3a)

Âw = R(1,m(i−1))

(
Ûn

)†
R(m+1,mi)

(
Ûn

)
. (3b)

However, no prior knowledge and assumptions about Ĉw

and Âw are involved in (3). An obvious problem is that
the estimated Âw may be unstable, no matter Aw is stable
or not. Some modified methods with guaranteed stability are
reported [4], [8], [9]. Nevertheless, an AMB system is open-
loop unstable and these methods cannot be applied directly.

To overcome these defects, we propose a novel method to
estimate Ĉw and Âw based on Ûn. Since a state space model
is invariant under similar transformation, we can define

Âw = UĀwV, Ĉw = C̄wV, (4)

where Āw is a real block diagonal matrix, whose eigenvalues
equal the predefined poles λ = {λk} and V = U−1 is a

matrix to be optimized. In this paper, for given λ, the following
optimization problem is solved to obtain V and C̄w

min
V,C̄w

∥∥∥Go

(
Ĉw, Âw, i

)
− Ûn

∥∥∥2

. (5)

The optimization problem (5) can be further reduced. In
fact, suppose that

Ûn =


U1

...

Ui

 , (6)

with Uk ∈ Rm×n, k = 1, · · · , i. Define the block rearrange-
ment of Ûn as

Û′n =
[
U1 · · · Ui

]
, (7)

then it can be verified that

min
V,C̄w

∥∥∥Go

(
Ĉw, Âw, i

)
− Ûn

∥∥∥2

⇔ min
V,C̄w

∥∥∥∥∥∥∥∥∥∥∥


C̄wV

C̄wĀwV
...

C̄wĀ
i−1
w V

− Ûn

∥∥∥∥∥∥∥∥∥∥∥

2

H=Hi(V,Āw,i)
⇐=========⇒ min

V,C̄w

∥∥∥C̄wH− Û′n

∥∥∥2

C̄w=Û′
nH†

⇐======⇒ min
V

∥∥∥Û′nH†H− Û′n

∥∥∥2

. (8)

The last optimization problem in (8) is a nonlinear optimiza-
tion problem associated with the invertible matrix V. This
optimization problem is not easy to solve in practice. In this
paper the random optimization technique is utilized to obtain
a "good enough" solution of V̂. That is, for a large enough
number N , N invertible candidate matrixes {Vk}Nk=1 are
generated from some probability distribution, then the "good
enough" estimation V̂ is given by

V̂ =

{
Vκ : ν (Vκ) = min

1≤k≤N
ν (Vk)

}
, (9)

where

ν (V) =
∥∥∥Û′nH†H− Û′n

∥∥∥2

,H = Hi

(
V, Āw, i

)
. (10)

Finally,

C̄w = Û′nHi

(
V̂, Āw, i

)†
, (11)

Âw = V̂−1ĀwV̂, Ĉw = C̄wV̂. (12)

In this paper, the proposed FDSIM with predefined poles
will be abbreviated as "FDSIM-λ".

III. IDENTIFICATION BASED ON FDSIM-λ WITH INITIAL
ESTIMATION OF SYSTEM POLES

For a system, suppose the FDR data

Gm (jωk) , k = 1, 2, · · · ,M (13)

is obtained by the swept-sine measurement. Moreover, suppose
the poles of the subsystem can be roughly estimated as λ0.
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Figure 1: Scheme of an AMB system

For given pole set λ, the identified model by FDSIM-λ is
Ψ̂ (λ) = (A (λ) ,B (λ) ,C (λ) ,D (λ)) and the correspond-
ing frequency responses are

Ĝi (λ, jωk) , k = 1, 2, · · · ,M. (14)

Then the pole set is estimated by solving the following
optimization problem:

λ̂ = argmin
λ

M∑
k=1

∥∥∥Ĝi (λ, jωk)−Gm (jωk)
∥∥∥2

. (15)

The initial estimation of poles λ0 is used as the initial value
in this optimization problem. Some constraints can be incor-
porated into this optimization problem to ensure the resultant
optimal poles obey some known properties. This optimization
problem can be solved by standard nonlinear optimization
algorithm and the details of solving is ignored in this paper.

IV. EXPERIMENT: IDENTIFICATION OF AN AMB SYSTEM

In this section, the proposed method is applied to identify
an AMB system.

A. System model and problem description

This paper concentrates on AMB systems with fully sus-
pended rotors. This paper supposes that the axial and radial
dynamic characteristics of the rotor can be decoupled. More-
over, this paper considers static identification, that is, during
the identification experiments the rotor does not rotate. Thus
gyroscopic effects [3] are not involved in the experiments and
the dynamic features in two orthogonal radial planes can also
be decoupled. In this paper we only consider the dynamic
model of the rotor in one radial plane.

Since AMB systems are open-loop unstable, only closed-
loop experiments can be performed. However, the model of the
controller is known, thus it is not difficult to compute the open-
loop model by block transformations. The system scheme of
a typical AMB system is shown in Fig. 1. As shown in Fig. 1,
this paper mainly considers the open-loop system consisting
of the power amplifier, the magnetic bearing, the flexible rotor
and the sensor. In the following part of this paper, we use the
term "Open-Loop Bearing-Rotor System (OLBRS)" to refer
to this system. In a radial plane, the OLBRS is a (2× 2)-
dimensional system.

B. Experiment setup and data preprocessing

The magnetic bearing system used in the experiments is
shown as Fig. 2. A detailed description of this system can
be found in [10]. This system is characterized by an about

 
Figure 1: Magnetic bearing-rotor system 

 
This system is characterized by an about 3.5m long and 630kg heavy rotor. Four radial 
electromagnetic bearings and an axial one are mounted to levitate the rotor. The displacement of 
the rotor is measured by five sensors. Based on the displacement signal, a DSP controller 
computes dynamically the adequate current to levitate the rotor and an amplifier produces the 
corresponding current. In this system, the bearings work in the differential mode, thus a bearing 
contains two electromagnets. The definition of coordinate system in this bearing system is 
illustrated in Fig. 1. In the reminder part of this paper, the electromagnet driving the rotor to 
direction X1+ is called as “bearing X1+”, and so on. 
The radial gap between the rotor and the auxiliary bearing is 0.3mm in diameter. In other words, 
support that the levitation position of the rotor exactly matches the center of the auxiliary bearing 
and no significant bending of the rotor occurs, the range of radial motion of the rotor is 

0.15mm± .  
 

Figure 2: Magnetic bearing-rotor system

3.5m long and 630kg heavy rotor. Four radial electromagnetic
bearings and an axial one are mounted to suspend the rotor.
The nominal maximum displacement of rotor, restricted by
the clearance of auxiliary bearing, is 150µm. The definition
of coordinate system in this bearing system is illustrated in
Fig. 2. The nature frequencies of the first three free-free
bending modes of the rotor are approximately 45Hz, 122Hz
and 239Hz, respectively. A maximum rotational speed of
230Hz is achieved on this system, namely beyond the second
bending mode.

Closed-loop swept-sine measurements are performed on
this AMB system and the FDR model of OLBRS is then
calculated. For such a large-size AMB system, the system
delay will significantly affect the FDR. However, the system
delay model is not involved in a FDSIM model and will bring
negative effect to identification, thus it should be eliminated. In
this paper, the method proposed in [11] is applied to estimate
and eliminate the system delay.

C. Experiment results

The experiment result is shown in Fig. 3. Here Bode plot is
applied to express the magnitude of the frequency response
gain and the phase shift. Since the OLBRMs discussed in
this paper are 2×2 systems, four subplots are contained in
the plot. The arrangement of the subplots corresponds to the
arrangement of the transfer function matrix. In this Bode plot,
blue dots denote the measured FDR and red lines denote the
frequency response of identified model.

As shown in Fig. 3, the Bode plots of identified model fit
the measured FDR precisely. This fact validates the proposed
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Figure 3: Experiment result

identification method. However, some antiresonances (e.g. the
antiresonance of the second bending mode) are not correctly
identified. In our opinion, the main reason is that FDSIM is
essentially a least-square type method, the estimation error
near antiresonances will be submerged by the error near
resonances, as discussed in [11].

V. CONCLUSIONS AND DISCUSSIONS

In this paper a novel FDSIM is proposed. The proposed
method FDSIM-λ can ensure that the resultant model pos-
sesses predefined poles. Based on the proposed method, an
initial estimation of the system poles and constraints on the
poles, the system can be identified and it can be guaranteed
that the resultant system possesses some predefined properties.
The proposed method is applied to identify AMB systems. Ex-
periments on a large-size AMB system validate the proposed
method.

The future works of this paper include:
1) In this paper, a random optimization strategy is applied

to find a "good enough" transform matrix V̂. However, this
is quite inefficient and the exact optimum cannot be achieved.
Analytical or efficient numerical solution of Eq. (8) should be
developed.

2) As mentioned, the antiresonances are not precisely fitted
by the proposed method. On the other hand, as thoroughly
discussed in [12], [13], [11], the antiresonance frequencies
play an important role in defining the rotor’s flexible behavior,
therefore one expects precise agreement of the identified
model with the measured data near antiresonance frequencies.
A simple solution to this problem is adding a cost term
associated to the antiresonances to Eq. (15). However, this
method will not affect the least-square nature of FDSIM.
Researches on this problem should be performed.

3) In this paper, the parameters in FDSIM are chosen em-
pirically. Moreover, for a stable system, the numerical stability
can be ensured by the w-FDSIM, however, an AMB system is

essentially instable, so that numerical illness or ill-condition
may arise while applied w-FDSIM-based methods and the
paramter α in w-FDSIM (see [5]) should be selected carefully.
In future works, we expect to make detailed researches on the
choice of these parameters and develop novel identification
method to deal with instable systems.
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