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Abstract—We will present a finite element program imple-
menting the idea of Nitsche-type mortaring in the framework of
simulating electrical machines. Using this method it is possible to
split the domain into subdomains only connected via a function
on the interface. From this approach we gain the advantage that
adjacent meshes (e.g. rotor and air gap) do not have to fit together
nodewise. The mortaring will be used on the interface between
rotor and air gap as well as on the symmetry edges of the motor,
since only a part of the machine is considered in the simulation
due to motor symmetry.

I. INTRODUCTION

The program at issue was designed to deal with the magne-
tostatic case of Maxwell’s equations in 2D, as it occurs as a
simplification in the simulation of electrical machines. Starting
with:

curlE = −∂B
∂t

;

curlH = J +
∂D

∂t
;

divD = ρ;

divB = 0;

with material laws:

B = µ(|H|)H + M;

D = εE + P;

J = σ (E + v ×B) .

we can derive the magnetostatic case. Here E denotes the
electric field intensity, P the polarization. 1

µ = ν, with µ
the permeability and ν the reluctivity, ρ stands for the charge
density. The electric conductivity is represented by σ, v the
velocity and ε is the permitivity. Under the assumptions, that
the magnetic flux density B, the magnetic field intensity H
and the electric current density J are time-independent and
∂D
∂t � J, with D denoting the electric flux density we arrive

at the magnetostatic formulation.
Those assumptions are reasonable in the framework of elec-
trical machines since we are dealing with slowly varying
magnetic fields.
On a single computational domain with ∂Ω symbolizing its
boundary we get the following boundary value problem:

Find u : Ω→ R such that

−div (ν (|∇u|)∇u) = J3 −
∂M1

∂x2
+
∂M2

∂x1
in Ω

u = 0 on ∂Ω

If we consider a computational domain divided into subdo-
mains Ωi with interfaces Γij between the domains Ωi and Ωj
we have to impose additional conditions on the interfaces. In
our case those subdomains will be the rotor, the stator and the
air gap. The adapted boundary value problem is he following:

Find u : Ω→ R such that

−div (ν (|∇ui|)∇ui) = J3,i −
∂M1,i

∂x2
+
∂M2,i

∂x1
in Ωi

ui = uj on Γij

ν (|∇ui|)∇ui · ni −Mi · τi
= ν (|∇uj |)∇uj · nj −Mj · τj on Γij

u = 0 on ∂Ω

In this system of equations M denotes the magnetization if
the domain is a permanent magnet, J3 is the only nonzero
component of the current density vector and ni stands for the
outer normal vector and τi for the tangential vector of the
subdomain Ωi. The reluctivity ν depends nonlinearily on u.
The second condition states that the solution u does not
have jumps on the interface between two domains. The third
condition characterizes the flux in normal direction.

II. NONLINEAR MATERIALS

During computation we deal with the dependency of ν on u
in nonlinear materials by applying a Newton method. For the
termination criterion we measure the L2-norm of the residual

F (.) := b−A (ν (|∇un−1|))un.
Where b denotes the right-hand-side of the multidomain for-
mulation and A the matrix representing the linearized system.
The index n, n−1 refers to the solution of the Newton method
in the n and n − 1 step respectively. If the residual of the
last computed un for the current rotor-stator-constellation is
smaller than ε times the residual of the initial guess u00 in the
L2-norm:

F (un) ≤ εF (u00)

we accept the last computed un as solution. Here the tolerance
parameter ε is chosen 10−6.
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III. DOMAIN DECOMPOSITION TECHNIQUES

We want to approximate a full rotation of the motor without
remeshing the whole domain in every discrete step. One
possibility to do this is the moving band technique [1]. The
idea is to fix the meshes in two adjacent domains and only
generate a new mesh in a small region between those. If we
can impose an equidistant mesh on the two adjacent parts
we can even use the same mesh for each calculation. Using
this approach we have a conforming mesh in every rotation
step. The downside of this technique is that we cannot use
nonconforming meshes and – as mentioned in [2] – in the 3D
case the remeshing for each calculation is impractical.
Focusing on domain decomposition techniques which allow us
to generate one mesh for each subdomain independently for
all rotational displacements we find three major approaches:

• the mortar element method
• the discontinuous Galerkin method
• the Nitsche-type mortaring.

In the framework of the mortar element methods on the
interface between two domains one domain is defined as the
masterside and one as the slave. To glue both domains together
Lagrange-multipliers are used. In the standard form this leads
to a saddle point problem. By choosing special shape functions
[3] for the Lagrange multipliers this saddle point form can be
avoided [2].
The classical discontinuous Galerkin approach is formulated
for each triangle of the mesh, see also [4]. The ansatz functions
are discontinuous over the element interfaces. Stability is
guaranteed by adding penalisation terms for the jumps of the
solution between to adjacent triangles in the bilinear form.
This can be easily generalized to the domain level.

IV. NITSCHE-TYPE MORTARING

Originally the idea of Nitsche was to incorporate Dirichlet
boundary data directly into the variational formulation and not
– as usual – into the function space [5].
The same principle can be applied on an interface between
two subdomains. In the literature we can find slightly different
approaches all named Nitsche(-type) mortaring (see [6], [7]),
we will follow the formulation proposed in [8]. The idea
is similar to the incorporation of boundary conditions: The
function which was given in the case of incorporating Dirichlet
boundary condition is now an unknown function λ on the
interface between the two domains. This unknown function
represents the solution on the interface u

∣∣
Γ

.
To get a continuous solution on the whole domain we have
to ensure that there are no jumps between the solutions
on adjacent subdomains. Here the function on the interface
comes into play as we enforce the solution on each of these
subdomains to match λ.
To show the difference between the standard variational for-
mulation (1) in comparison to Nitsche-type mortaring (2) both
are given below. The variational form of the boundary value
problem for the single computational domain writes as:

Find u : Ω→ R such that∫
Ω

(
ν (|∇u|)∇u− (M1,M2)Ti

)
· ∇vdx =

∫
Ω

J3vdx (1)

∀v : Ω→ R, v
∣∣
∂Ω

= 0;

whereas the Nitsche-type formulation based on the multido-
main approach with the notation ui := u

∣∣
Ωi

is given by:

Find u : Ω→ R, λij : Γij → R such that

∑
i

(∫
Ωi

(
ν (|∇ui|)∇ui − (M1,M2)Ti

)
· ∇vidx

−
∑
j

∫
Γij

(
ν (|∇ui|)∇ui · ni − (M1,M2)Ti · τi

)
(vi − φij) dS︸ ︷︷ ︸

(i)

+ β
∑
j

∫
Γij

(ν (|∇ui|)∇vi · ni) (ui − λij) dS︸ ︷︷ ︸
(ii)

+ α
∑
j

∫
Γij

ν (|∇ui|) (ui − λij) (vi − φij) dS︸ ︷︷ ︸
(iii)

)

=
∑
i

∫
Ωi

J3 vidx (2)

∀v : Ω→ R, v
∣∣
∂Ω

= 0 and ∀φij : Γij → R

The functions φ appearing in the formula are the test functions
on the boundary.
This formulation with interior interfaces Γij can be easily
adjusted to the case of symmetry edges.
We observe, that if the exact solution u of (1) is smooth
enough, then it also solves the formulation of the Nitsche-type
mortaring (2). This holds since the term (i) vanishes due to
∂ui

∂ni

∣∣
Γij

= − ∂uj

∂nj

∣∣
Γij

on the interface between the domain Ωi
and Ωj .
The terms (ii) as well as (iii) are equal to zero in case of such
a solution u because ui−λij = 0, considering ui = uj = λij
on Γij .
Therefore the formulation (2) is consistent.
Due to the fact that we solve the problem on a mesh we only
get a discrete approximation of u. Therefore the term (iii)
will act as a penalisation term.
Via the weight factors α and β we can control the properties
of the system. For example by assigning β = −1 we get a
symmetric system. To ensure solvability we have to assign α
in a proper way. For instance if β = −1, α has to be suitably
large, whereas in the case β = 1 there are no restrictions for α.
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The right hand side of the resulting system of linear equations
can be represented by a matrix of the following form:

AΩ1
αC̃Γ1

+ βBΓ1

AΩ2
αC̃Γ2

+ βBΓ2

αC̃Γ1 −BΓ1 αC̃Γ2 −BΓ2 αĈΓ1 + αĈΓ2



uΩ1

uΩ2

λ


And the loadvector has the form:


c̄1(M1,M2)TΩ1

+ c̄2JΩ1,3 − c̄3(M1,M2)TΩ1
· τΩ1

ĉ1(M1,M2)TΩ2
+ ĉ2JΩ2,3 − ĉ3(M1,M2)TΩ2

· τΩ2

0


One of the advantages of this approach is the fact that due
to the separation of the meshes by the interface function we
do not have to provide matching meshes at the interface. This
is of particular interest when simulating electrical machines,
since it allows for an arbitrary rotational displacement between
the motor parts without remeshing.

V. MODEL PROBLEM

The motor we want to simulate is depicted in Fig. 1.
Material in grey is iron, yellow materials are magnets. Their
magnetisation is parallel in the direction as indicated in the
picture. There are 12 slots with 4 pole-pairs in the stator –
the double layer winding is defined according to the scheme
in the figure.

Figure 1. Motor sector (mortar edges depicted in red)

In case of electrical machines we use 3 different meshes;
one for the rotor, one for the stator and one for the air gap
domain. The rotor and the stator meshes are generated by
NETGEN [9] resulting in an unstructured mesh, in the air
gap we provide a structured mesh.

VI. RESULTS

To compare the results computed by the finite element
program at issue, the motor with the same specification was
simulated with FEMAG [10].
FEMAG used a motor mesh with a total of 10552 nodes
whereas the mesh for our program consited of 7799 nodes
including 181 on the interface and 118 on the symmetry
edges. The parameters in the interface integrals were chosen
as α = 100 and β = 1.
On the interface between rotor and air gap we get three
different solution for the vector potential coming from the
mesh on the rotor, one from the air gap mesh and additionaly
the function λ on the interface. The differences of these
solutions are shown in the following Fig. 2:
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Figure 2. Comparison of the vectorpotential on the interface

In a postprocessing step the torque and linked fluxes are cal-
culated. A comparison of these quantities with those estimated
by FEMAG is depicted in Fig. 3 and 4 respectively.
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Figure 3. Torque comparision for the motor with currents
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Figure 4. Linked flux comparision for the motor with currents

The differences in the curves of the torque vanish if we refine
the mesh sufficiently.

VII. FUTURE WORK

Using any sort of domain decomposition technique enables
us to use not only nonconforming meshes between the domains
but as a result allows an arbitrary rotational displacement
between rotor and stator. We will use this advantage in future
work to construct more efficient path-following algorithms
with respect to φ.
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