
Stability analysis of a new Passive PMs Bearing
Ernesto Tripodi a, Antonino Musolino a, Rocco Rizzo a, Dante Casini a

a Department of Energy and System Engineering, University of Pisa, Largo Lucio Lazzarino, I-56126 Pisa, Italy,
ernesto.tripodi@dsea.unipi.it

Abstract—In this paper a new Permanent Magnets (PMs)
bearing is presented. The device is composed of a rotor capable to
levitate at a short distance from a dedicated stator. The magnetic
suspension is achieved by proper configurations of PMs arranged
on both the stator and the rotor. The device is characterized
by intrinsic instability and passive stabilization is attempted
exploiting eddy currents on a conducting sheet surrounding the
stator magnets. The system has been simulated by means of
a dedicated numerical tool capable to take into account the
effects of the magneto-mechanical coupling. In particular, the
coupled problem has been integrated by means of a prediction-
correction nested scheme. The simulation activity has produced
some interesting results, that are here extensively discussed. More
specifically, it has been shown that the stability with respect to
the center of mass translation can be passively obtained, if the
rotations are actively prevented. An idea of an active stabilizing
system for the rotations, exploiting the results of the simulation
is finally briefly described.

I. INTRODUCTION

The modern development of Magnetic Levitation systems
(known as MAGLEV) started in the late 1960s, when the idea
of using magnetic force to levitate vehicles became bearable,
mainly due to some recent discoveries: the development of
low-temperature superconducting wire, the transistor and chip
based electronic control technology [1], [2]. MAGLEV pro-
vides high-speed motion, safety, reliability, low environmental
impact and minimum maintenance [3]. There are two basic
options to obtain magnetic levitation: electromagnetic system
[4], [5], [6] working in attraction mode with forces generated
by electromagnets and electrodynamic system [7], [8] working
in repulsive mode with forces generated by superconductive
coils. Both the solutions are characterized by unstable behav-
ior. In particular the first one is unstable in the levitating
direction (typically vertical): in fact as the two parts of the
systems approach one the other the attractive force increases.
The electrodynamic system is unstable in the direction trans-
verse to levitation and in the motion directions. The nowadays
availability of rare heart PMs (e.g. NdFeB) characterized by
high values of remnant field has made possible to conceive
a new class of MAGLEV systems where the suspension is
assured by the repulsion of properly shaped PMs [9], [10].
As known, stability of levitation systems based on PMs is
prevented by Earnshaw’s theorem [11]. This theorem states
that a set of steady charges, magnetizations, or currents cannot
stay in stable equilibrium under the action of stady electric
and magnetic field alone. Several applications of MAGLEV or
magnetic bearing devices must be fail-safe, and this poses se-
vere constraints on the design and operation of the stabilization
systems. In this context a great effort is devoted to the design

Figure 1. A 3D view of the analysed device.

of passive and more reliable stabilization devices. There are
some circumstances under which electric and magnetic sys-
tems can avoid the consequences of the Earnshaw’s theorem:
time varying fields (e.g., eddy currents, alternating gradient),
active feedback, ferrofluids, superconductors and diamagnetic
systems. In this paper, the use of eddy current stabilization for
the reduction or the elimination of the intrinsic instability of
the bearing is investigated. More precisely, if some magnetized
parts of a system are in motion near conductive materials,
eddy currents are induced and the system is not under the
action of steady magnetic fields alone. The hypothesis of
the Earnshaw’s theorem, that is a direct consequence of the
Laplace equation, is not valid in this case since the system is
now governed by the diffusion equation. In this paper some
preliminary results of the coupled electromechanical analysis
of a PMs bearing are discussed, showing how the presence
of motional induced eddy currents have a positive effect on
the dynamic of the bearing device, so reducing the complexity
of the control system. In particular, Section II introduces the
proposed device, Section III briefly describes the numerical
tool used for the analysis of the device, while Section IV
discusses the obtained results. In Section V the results obtained
are summarised and a simple control system is proposed to
achieve the overall stability.

II. PROPOSED DEVICE

The proposed system, exploiting the induced eddy currents
to contrast the instability related to the PMs arrangement
is shown in figures 1 and 2. It is composed of a toroidal
stator and a segmented rotor made of (at least) three blocks
equally spaced along the circumference. The stator is fixed
while the rotor can move with 6 degrees of freedom (DoFs).
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Figure 2. Cross section of the bearing.

The PMs in both the stator and the rotor are arranged in
Halbach array configurations [12] focusing the field lines
in the airgap between them. A sheet of conductive material
surrounds the stator (black in 2. Levitation (along z-direction)
is achieved by the repulsion of oppositely magnetized PMs.
In order to describe the dynamics of the proposed device let
us assume that the moving part rotates around a vertical shaft
(directed as the z-axis) coincident with the symmetry axis of
the stator. A system of motion induced eddy currents flows
on the stator sheet; as a consequence a levitation force in
the z-axis direction (which sums with the levitation force of
the PMs) and a magnetic drag torque are observed. In fact,
the motion induced eddy currents interact with the PMs of
the rotor in order to reduce the cause that produces the eddy
currents themselves. This is achieved by a velocity reduction
(a drag force on the rotor) but also by moving the source of the
inducing field (the PMs on the rotor) away from the conductive
region. The system is stable in the levitation direction since
the levitation force is a decreasing function of the distance. In
correspondence to the symmetric configuration radial forces
cancel. If the symmetry condition does not hold (e.g. because
of a radial shift of the rotation shaft) a net force in the radial
direction is expected to appear. This force is the resultant of
the forces between the two PMs systems and those between
the motion induced eddy currents and the PMs on the rotor.
As known (Earnshaw’s theorem) the forces between the PMs
are destabilizing and as a consequence the rotor would touch
the stator after a short time. Referring to figure 2, if we
consider a displacement of the rotor in the y-axis direction
we see that the currents induced on the conductive sheet are
stronger on the side characterized by a reduced distance with
the rotor, while are weaker on the side where the distance
is greater. The net resulting force is then directed along the
negative y-axis direction so performing a stabilizing action.
The described stabilizing contribution of the forces between
the induced currents and the PMs is present in the case of
angular displacement of the rotation shaft with respect to

the vertical (z-axis) direction. Considering that the rotor is
segmented in at least three sectors, as a results of this angular
displacement some of its sectors are closer to the stator, others
more distant. The induced currents on the regions of the stator
which correspond to the nearest sectors of the rotor are more
intense and consequently the forces exerted on the PMs in
these sectors of the rotor are strongest. On the contrary the
forces on the rotor sectors that are more distant from the stator
are decreased. The resultant effect is a torque restoring the
vertical position of the rotation shaft.

III. THE NUMERICAL ELECTROMECHANICAL
FORMULATION

In order to investigate the performance of this system it is
necessary to use a numerical model. The equations describing
the rotor dynamics with six DoFs are inherently nonlinear
because of the dependence of the force on the position of
the rotor itself. Moreover the dynamic problem is coupled
with the diffusion equation of the magnetic field. The solution
of the electromagnetic problem has been carried out by an
integral formulation that reduces the diffusion equation to an
equivalent network with time varying parameters. The values
of the parameters in the electrical equations are function of the
position of the rotor. The details of the adopted formulation
are reported in [13], [14] and the development of a C code
exploiting the GPGPU Nvidia CUDA libraries is extensively
described in [15].
Under the hypothesis of linear magnetisable materials the
equations of the problem produced by the equivalent network
formulation coupled with the Newton-Euler equations of mo-
tion, can be written as:

L (C (t))
di

dt
+
[
R (C (t)) + K

(
C (t) , Ċ (t)

)]
i = e(t)

F (C (t)) = mq̈ (1)
M (C (t)) = Iθθω̇ + ω × Iθθω

where e(t) represents the vector of the applied voltage
generators and i is the vector of the currents in the elementary
volumes, included the equivalent magnetization currents. All
the coefficients matrices are function of which represents the
system configuration at the instant t. C(t) is defined as the set
of the positions and orientations of all the elementary volumes
in which the device is discretized:

C (t) = (x (t) ,y (t) , z (t) ,φ (t) ,θ (t) ,ψ (t))

L (C (t)) denotes the inductance matrix; R (C (t)) is the
resistance matrix and K

(
C (t) , Ċ (t)

)
takes into account the

electromotive force due to the motional effects. In particular
Ċ(t), termed as the derivatives of the system configuration at
the instant t, describes the velocity of every elementary volume
in the hypothesis of rigid body. The Ċi(t) corresponding to the
i-th elementary volume is constituted by the three components
of the translation velocity, the three components of the angular
velocity, and the three coordinates of the center of rotation.
Equation (1) is solved by a prediction correction nested
scheme. The rationale behind it is the search for an ap-
proximation of the time dependence of the coefficients in
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electrical and mechanical equations. The predictor-corrector
approach is used to obtain an approximate behavior of the
named quantities by a linear interpolation between the known
values at the previous time step and the predicted values at the
next time step. Inserting this knowledge in the equations has
the effect of considering updated values of the coefficients,
allowing a coupling between the equations which is stronger
than the one in a simply staggered scheme and comparable
with a monolithic approach. The integration algorithm can be
described as follows (∆t = tn+1 − tn):

• assuming C(t) constant in the interval ∆t an estimate of
the currents at tn is obtained by a trapezoidal rule applied
on (1a);

• an estimate of C (tn+1) = Cn+1 is obtained by applying
forward Euler integration to (1b) and (1c);

• a piecewise linear approximation is assumed for L in ∆t,
similarly for R and K:

L̇ (tn) '
L
(
C̃ (tn+1)

)
− L

(
C̃ (tn)

)
∆t

and so

L (t) ' L (tn) + L̇ (tn) · (t− tn) = Ln + L̇n · (t− tn) ;

• The expressions are introduced in (1a):(
Ln + L̇n · (t− tn)

) di

dt
+
[(

Rn + Ṙn · (t− tn)
)

+(
Kn + K̇n · (t− tn)

)]
i = e(t) t ∈ [tn, tn+1]

(2)

• integrating with a trapezoidal-like rule we obtain the
corrected values of the currents at the instant tn+1. We
write:
tn+1∫
tn

(
Ln + L̇n (t− tn)

) di

dt
dt +

tn+1∫
tn

[(
Rn + Ṙn (t− tn)

)
+

+
(
Kn + K̇n (t− tn)

)]
idt =

tn+1∫
tn

e(t)dt

(3)
• and after the numerical integration:

Ln (in+1 − in) +
∆tL̇n

2
(in+1 + in)+

+
∆t (Rn + Kn)

2
(in+1 + in)+

+
∆2t

(
Ṙn + K̇n

)
2

in+1 =
∆t (en+1 + en)

2
(4)

• Collecting terms finally gives a linear system where the
unknowns are the corrected currents at the instant tn+1 :Ln +

∆tL̇n
2

+
∆t (Rn + Kn)

2
+

∆2t
(
Ṙn + K̇n

)
2

 in+1 =

=
∆t (en+1 + en)

2
+

(
Ln −

∆tL̇n
2
− ∆t (Rn + Kn)

2

)
in

(5)

x
y

z
dx

Figure 3. Configuration with the rotor shifted along the x-axis.

• Once (5) is solved, force and torque are evaluated again
by using the force coefficient in the predicted configura-
tion Φ̃ (tn+1) with the corrected values of the currents
i (tn+1) just obtained. The integration of the mechanical
equations yields the corrected position of the moving
body.

The integration method has been validated and the results
exhibit a very good accuracy respect to the experimental data
found in literature, as [16].

IV. SIMULATION RESULTS

As a case study we considered a device with an average
radius of 8 cm. The tube constituting the stator has a radius
of 2.2 cm and the clearance between rotor and stator is 7 mm.
We made a set of simulations driving the rotor at different
rotational speeds. We noticed that, at low speeds (less than
3000 rpm), the stabilizing effect was not enough (i.e. the
system behavior was really close to the static case, without
enough levitation force), while, increasing the speed over a
certain value (more than 4000 rpm) have the effect of reducing
the magnetic drag force, as expected, but without significative
variations in the stabilizing effect. We report here the results
obtained with a rotational speed of 4800 rpm.
The levitation force at rest is 450 N and increases to 470 N at
motion. The radial magnetized red and blue sectors have an
angle of 67.50◦, the green and yellow an angle of 45◦ while
the azimuth magnetized purple and pink sectors have an angle
of 33.75◦. The radial width is 0.5 cm for the red and yellow
sectors, 1 cm for the green and blue, and 0.3 cm for the purple
and pink ones. The thickness of the conductive (aluminum)
sheet is 2mm. The numerical formulation in Section III has
been used to perform the analysis of some configurations
obtained by the described device.
We started considering the device with the conductive sheet
removed with an initial position characterized by the rotation
shaft shifted of 1.5 mm with respect to the symmetry axis
as shown in figure 3. The results of simulation are shown
in figures 4 and 5. As expected the system is unstable with
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Figure 4. Velocity of the center of mass of the rotor.
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Figure 5. Components of the angular velocity.

respect to the radial direction and with respect the rotation
around the x and the y axes. The contact between the rotor and
the stator happens after about 3 ms. Figures 6 and 7 refer to the
configuration where the conductive sheet has been introduced.
Also in this case the rotor touches the stator as a consequence
of the unstable behavior of the system. We can observe that the
presence of the conductive sheet (and of the induced currents)
is able to slower the unstable dynamics; the rotor takes a longer
time (about 17 ms) to touch the stator.

Despite the eddy currents on the sheet are not able to
stabilize the device, they can be used to reduce the complexity
of the control system since a lower dynamic requires a
slower control action that is easier to be designed. To further
investigate the effects of the currents on the conductive sheet
we performed simulations of the device with a reduced number
of DoFs preventing rotations respect to x and y axes assuming
the presence of two of the mentioned bearings arranged in a
vertical configuration. Figure 8 shows the velocity waveforms
while figure 9 shows the force waveforms; the simulation has
been done with the same lateral displacement dx = 1.5 mm.

According to the results of the simulation, the dynamic of
the system is stable. This is actually a good result if we think
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Figure 6. Velocity of the center of mass of the rotor.
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Figure 7. Components of the angular velocity.
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Figure 8. Velocity of the center of mass of the rotor with 3 DoFs.
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Figure 9. Force the center of mass of the rotor with 3 DoFs.
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Figure 10. Velocity of the center of mass of the rotor with 3 DoFs.

that in this kind of devices, stability has to be discussed in
the contest of dynamics. This means that the robustness re-
quirements previously mentioned, involve concepts of dynamic
stability in presence of modeling error due to uncertainties
(modern non linear dynamics). This theory, usually, not only
requires the knowledge of how the forces and torques change
with the position and orientation but also of how they changes
with both linear and angular velocities. The control systems are
consequently usually really complex: this result is then really
interesting because it permits a simpler synthesis of the active
controller and so reducing the cost. Another similar simulation
has been done applying a lateral force of 10 N to the rotor.
The results are shown in figures 10 and 11; the system is
able to compensate the lateral force as well as for the lateral
displacement.

We finally performed a simulation (6 DoFs) where only the
vertically magnetized PMs (the yellow and the green ones in
figure 2) are retained in the stator. The results are reported
in figs. 12 and 13 respectively for the velocities, while in
fig.14 for what concerns the forces on the center of mass.
The system remains unstable, but its response has changed
showing an oscillatory behavior. The contact occurs after 22
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Figure 11. Forces on the center of mass of the rotor with 3 DoFs.

Figure 12. Velocity of the center of mass of the rotor.

ms. The levitation force has about halved.

V. CONCLUSIONS

An exhaustive simulation activity has been performed on
a PMs bearing based on Halbach array configurations. The
conductive sheet is not sufficient to stabilize to system, but it
makes slower the unstable dynamics, actually simplifying the
control systems action. Since the actuators basically consist
of coils, a slower dynamics will need slower control actions,
and then smaller voltages. The main result of the our analysis
relies in the intrinsic stability with respect to the mass center
translation, once the rotations with respect x and y axes are
prevented. This means that a stabilization system is needed
only to maintain the direction of the rotation axis parallel to
the z-axis, while the system is able to stabilize the position of
the rotation axis. Equivalently, if the stabilizing action results
in a net force beside the needed torque, the system is able
to compensate this force by adjusting it position. A possible
setup for a stabilization device is shown in figure 15, where
four electromagnets are positioned in each side of the rotating
shaft where some ferromagnetic material has been inserted.
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Figure 13. Components of the angular velocity.

Figure 14. Forces on the center of mass of the rotor with 3 DoFs.
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Figure 15. Components of the angular velocity.
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Figure 16. Control scheme.

The current in the coils of the electromagnets can be
controlled by the value of the angular acceleration, as in the
simple control scheme shown in figure 16.
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