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Abstract—A multi-platform software Agros2D is presented,
whose purpose is to model complex 2D multiphysics problems
in engineering practice. The code is intended for monolithic
solving of systems of generally nonlinear and nonstationary
partial differential equations describing particular physical fields.
The numerical schemes implemented in the code are based on
a fully adaptive higher-order finite element method. The paper
discusses the unique features of the code and its internal structure.
Its power is demonstrated on an example aimed at modeling of
a passive axial magnetic bearing.

I. INTRODUCTION

Numerous engineering problems are characterized by coop-
eration of several physical fields. In many cases one field (for
example electromagnetic) produces another field (for example
thermal) and these fields influence mutually one another.

Even when the physical essences and continuous mathemat-
ical models of many phenomena of this kind are well known,
their numerical (or computer) modeling is still a challenging
problem. Their continuous mathematical models consist of
two or more generally nonlinear and nonstationary partial
differential equations describing the distributions of involved
physical fields. This system is often supplemented with a
set of ordinary differential equations describing corresponding
circuits (electric, magnetic, thermal, hydraulic, etc.). The co-
efficients of all these equations can be complicated functions
of physical parameters of present materials and media that,
however, depend on the state variables such as temperature or
pressure.

For the solution of the indicated problems we can use
nowadays two groups of codes codes. The first group are com-
mercial professional codes developed by software companies
and used both in industry and academy, the second group is
represented by open source codes developed and used mostly
in the academic sphere. The existing commercial codes are
mostly based on lower-order finite element methods, work with
elements of the first and second orders and miss advanced
adaptive techniques. On the other hand, they are user-friendly
due to very well elaborated preprocessors and postprocessors).
In this group, just COMSOL Multiphysics works with elements
up to the fifth order and a standard is h-adaptivity implemented
in it.

The development of codes with advanced adaptive methods
is intensively conducted mostly in the open-source academia
groups. But even when they often contain strong algorithms
and procedures, their user friendliness is rather low and some

of them are yet not suitable for solving complicated technical
problems. Nevertheless, even in this domain the progress
is fast. Our group has been developing for years software
Agros2D [1], [2] based on the library Hermes2D [3].

The aim of this paper is to show the structure of the code, its
unique features, and an illustrative example aimed at modeling
of a passive axial magnetic bearing.

II. BASIC CHARACTERISTICS AND UNIQUE FEATURES OF
AGROS2D

Agros2D is a multi-platform engineering software for solu-
tion of nonlinear coupled problems from a number of engineer-
ing disciplines (example of its main window being depicted
in Fig. 1) The code representing a powerful preprocessor

Figure 1. Main window of Agros2D

and postprocessor cooperates with the library Hermes that
includes the most advanced numerical algorithms based on
a fully adaptive higher-order finite element method and also
discontinuous Galerkin method. Both packages written in C++
are freely distributable under the GNU General Public License.

The codes exhibit quite unique features, for example:
• Solution of multiphysics problems characterized by

weak or hard coupling of the PDE system) with multi-
mesh technology (every physical field can be calculated
on a different mesh generally varying in time).

• Steady state, transient and harmonic analysis for physical
fields (electric currents, electrostatics, magnetic, heat
transfer, structural mechanics, radio frequency, acoustics,
incompressible flow.
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• Advanced implementations of the Newton and Picard
solvers for the solutions of problems described by non-
linear PDEs.

• Full space (h, p and hp-adaptivity) [4] and also time
adaptivity.

• Triangular, quadrilateral and curved elements with hang-
ing nodes of any level.

• Advanced optimization techniques using the genetic
algorithms (simulated annealing, NSGA II and several
others).

• Higher-order methods of particle tracing, higher-order
Eggshell Method for computation of forces acting in
nonlinear magnetic fields.

Some of these features important for modeling and design
of the magnetic bearings are described in more detail:

III. SOLUTION OF NONLINEAR MAGNETIC PROBLEMS BY
NEWTON METHOD

The use of the Newton method is a well-established option
for solving nonlinear PDEs, see, e.g., [5], [6]. The theory of
its convergence is, however, rather complicated and the results
are restricted to simple academic examples. The matter is even
more complicated due to the necessity of damping, attempts
to save computation time by using the same Jacobian for
several successive steps, or other variants of the algorithm.
In the case of solution of complicated problems arising in the
engineering practice, one usually has to fine-tune the method
for each problem individually in order to secure sufficiently
fast convergence and avoid extensively long calculation.

The theory of the Newton method is widely discussed in
the literature. Most of the results are, however, from the field
of large nonlinear systems not coming from from the area of
partial differential equations. There are generally several pa-
rameters of the Newton method, that may be changed to secure
the maximum speed of the convergence process. We will first
present the way Jacobian and residual are derived form the
weak formulation. In the following, detailed implementation of
the Newton solver will be described, together with all different
variants and parameters.

A. Damping

By doing one step of the Newton method with damping
coefficient cD ≤ 1 we mean using equation

Y k+1 = Y k + cDD
k+1 . (1)

The calculated direction Dk+1 is used, but the step in that
direction is made shorter. It makes the Newton method more
secure. Damping is the key for solving difficult problems
with strong nonlinearities. Without damping, some problems
would not be solvable. On the other hand, using small fixed
damping coefficient for all problems would seriously damage
convergence of the method for simpler problems. The solution
is the use of more variants of the method. Some of the
parameters controlling damping in our algorithm follow:

• Selection of fixed or automatic damping.

• Damping coefficient cD for fixed damping (if cD = 1,
then no damping is used) and maximum acceptable
damping coefficient for the automatic damping.

The following points only apply for the automatic damping.

• Maximum allowed ratio rD between the actual and
previous residual norm. If this ratio is exceeded, the step
is refused, the damping factor is decreased and the step
is repeated.

• Coefficient for decrease of the damping factor in the situ-
ation described in the previous item. For all calculations
in this paper, the value 1/2 has been used.

• Number of steps, after which the damping factor may
be increased again.

B. Jacobian reuse

The modified Newton method (using the same Jacobian
for all iterations) has been proven useful by many authors.
The advantage of not evaluating the Jacobian in each step is
huge and justifies a somewhat slower convergence. For some
problems, however, it is not applicable, since the method would
not converge at all. In our algorithm, we introduced several
parameters that control reuse of the Jacobian and allow benefit
from both approaches.

• Jacobian reuse may be switched off.
• Maximum allowed ratio rJ between the actual and

previous residual norms for Jacobian reuse.
• Maximum number mJ of the steps with the same Jaco-

bian.

If the Jacobian reuse is allowed, after each full step with
calculation of Jacobian, at most mJ steps with this Jacobian
are performed. If, however, in some of those steps the residual
is not reduced by the factor rJ, this step (with the reused
Jacobian) is refused and the Jacobian is recalculated again.
Again, it is not clear what are the optimal values of mJ for
general nonlinear problems. Not to reuse Jacobian is the safest
way, but, for some problems, the Jacobian reuse may speed
up the algorithm significantly. On the other hand, using large
values of rJ close to 1 (which means that even very small
decrease of the residual norm is accepted) may be dangerous.
In some cases such setting increases the possibility of getting
in a wrong direction and ending up in a local minimum. Values
rJ ≥ 1 are definitely not recommended.

IV. FORCE CALCULATION METHODS

The evaluation of forces and torques acting on ferromagnetic
elements in non-linear magnetic fields is still a challenge. The
algorithms based on the Virtual Work and Maxwell Stress
Tensor are slow, the convergence is rather poor and accuracy
of the results is far from being high. Lower-order Eggshell
Methods are generally better [7], but they often suffer from the
same reasons Agros2D offers an efficient higher-order eggshell
method whose algorithms are described below.
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A. Computation of Forces Using Maxwell Stress Tensor
The Maxwell stress tensor SM can be written in the form

SM = − 1

2µ
(B ·B)I +

1

µ
B ⊗B , (2)

where B is the magnetic flux density vector, µ denotes the
permeability, I is the unit diagonal matrix and the sign ⊗
represents the dyadic product. The force FM acting on the
body of volume V and boundary S is now given by the integral

FM =

∫
S

SM dS , (3)

where S denotes the outward unit normal vector to the bound-
ary of the body. In the same way the torque acting on the same
body is given by integral

TM =

∫
S

r × (SM dS) , (4)

where r is the position vector.

B. Eggshell method
The Eggshell method is based on introducing a thin shell

over the surface of the body and a function satisfying the
conditions γ = 0 along the external boundary of the shell
and γ = 1 along its internal boundary. This function can be

body

eggshell
(area for volume integration)

γ = 0

γ = 1

Figure 2. Principal scheme of Eggshell method

chosen in many ways. In our case, we used the solution of the
Laplace equation in the eggshell with the prescribed boundary
conditions. From (3) and definition of γ, the resultant force on
the body can be expressed in the form

FM =

∫
V

SM · grad γ dV , (5)

where V is the volume of the eggshell. The torque can be
determined similarly. In our implementation, we use the solu-
tion of the Laplace equation in the eggshell domain obtained
using higher-order finite elements. These bring additional
smoothness to the solution and we can choose their orders
arbitrarily. Since the eggshell domain is covered with very
few elements, the additional computational cost caused by
increasing the element order is quite negligible.

V. ILLUSTRATIVE EXAMPLE

The power of the code and also of the method itself is
demonstrated on the computation of the axial force acting on
the passive magnetic bearing for a novel design of a valve (see
Fig. 3). The principal arrangement of the bearing together with
the principal dimensions is depicted in Fig. 4.
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Figure 3. Magnetic circuit of valve with axial bearing with main dimensions

A. Mathematical model
The continuous mathematical model of the problem is

represented by strongly nonlinear partial differential equations
providing the distribution of static magnetic field in the system.
The distribution of magnetic field is described in terms of
magnetic vector potential A by the equation

curl

(
1

µ
(curl A−Br)

)
= 0, (6)

where µ stands for the magnetic permeability and Br is
the remanent magnetization. A sufficiently distant artificial
boundary is characterized by the Dirichlet condition A = 0.
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Figure 4. Detail of principal scheme of bearing

Magnetic parts are made of M-50 Bearing Steel whose
saturation characteristic is shown in Fig. 5. The permanent
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Figure 5. Saturation curve of bearing steel M-50

magnets VMM10 are of NdFeB type and their manufacturer
provides the following parameters: remanence Br = 1.4T,
relative permeability in the second quadrant µr = 1.2 and
maximum allowable temperature is 80 oC.

B. Computation
Table I contains the parameters of computation needed for

determining the forces at one position of the axial bearing
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(z = 0.01m). The number of DOFs was comparable, the
prescribed residual norm was 10−4.

Table I. COMPARISON OF PARAMETERS OF COMPUTATION USING
AGROS2D, COMSOL AND FEMM (UNKNOWN RESIDUAL ACCURACY)

Agros2D 3.2 COMSOL 4.4 COMSOL 4.4 FEMM 4.2

Newton’s Dogleg

DOFs 69037 69426 69426 79908

time (s) 41 74 54 (25)

iterations 31 54 43 (21)

force (N) 8.91 8.34 8.34 8.28

Fig. 6 depicts the behavior of the absolute norm of residual
on the number of iterations. Fig. 7 shows the influence of
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Figure 6. Comparison of absolute norm of residual on number of iterations

selection of the damping factor on the number of iterations.
Fig. 8 depicts the mesh for the solution of the magnetic field
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Figure 7. Influence of damping factor on curve error versus iterations

after the process of the automatic adaptivity. The number of
DOFs is 69037 and solution of the system exhibits an error of
0.4 % compared to the reference solution.

C. Obtained results
Fig. 9 shows the distribution of magnetic field in the system.

Fig. 10 shows the static characteristic computed by Agros2D
and FEMM using the Maxwell tensor, Eggshell methods
and virtual work principle. It is clear that even the results
obtained by the Eggshell method are much better (the curve
is smoother).

Figure 8. Discretization mesh and polynomial order used for computation

Figure 9. Magnetic force lines
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Figure 10. Comparison of Agros2D and FEMM for calculating force acting
on the bearing

VI. TIME ADAPTIVITY

Time adaptivity is an important tool in improving efficiency
of solution of time-dependent partial differential equations.
Many problems exhibit rapid changes in solution in some parts
of the time interval, while they do not change significantly
otherwise. Using fixed time step for such problems would be
inefficient. Rather than that, Agros2D allows the user to select
adaptive time stepping. In such a case, optimal time step is
determined automatically using an error estimate in the form
of difference of two methods with different order.

VII. OPTIMIZATION

A continuous improvement of computers and their increas-
ing computational power brings the possibility to solve com-
pletely new types of engineering problems. Not only larger
and more complicated problems may be solved thank to the
possibility of solving larger discrete problems, but also large
sequence of calculations of the same model with different
parameters may be performed. It can be done in parallel
(thank to inherited parallelism of the considered problem), but
also using ordinary PC, since the calculation time of each
run may be short enough. It opens completely new areas,
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such as parametric analysis, material and shape optimization,
inverse problems, etc., for an ordinary PC users. Agros2D
brings several possibilities to perform such type of multiple
calculations in a systematic way.

A. Scripting in Agros2D using Python language
The first possibility is the use of scripting. It is an integral

part of the Agros2D software, which largely enhances its
capabilities. Instead of developing a new scripting language,
as it is usual in many commercial codes, we decided to use
Python. This choice has several advantages. First of all, most
users know Python, at least on an elementary level, which
enables them to use scripting in Agros2D without the necessity
to learn a new language. Another advantage is the possibility
to use whole range of already developed scientific libraries for
post-processing and visualization of results. This combination
of advanced finite-element calculations with large amount of
ready-to-use Python libraries is a very powerful tool.

Figure 11. Main window of PythonLab

In Agros2D, almost every action or setting (including geom-
etry definition, material specification, solver setting, evaluation
of post-processor quantities, etc.), that can be done through
graphical user interface, can be done from the script as well.
This is a very important feature for more advanced analyses.
It is also possible to use the GUI to create a basic model
and convert it to an equivalent script, which can be used as a
starting point.

B. Optimization framework OptiLab
The integration of a Python interpret into the application

is a truly powerful tool that allows the user to perform whole
range of different and specific analyses. Each user has different
needs and no GUI, however complicated, can fulfill all such
requirements. One of the most often used application of
previously described functionality is a parametric analysis and
optimization. Although it is perfectly possible to perform all
the analysis (development of optimization algorithm, manage-
ment of different designs, post-processing, graphs and figures
generation) using our scripting tool PythonLab, it is convenient
to approach those standard problems of engineering design
in a more systematic way. A newly developed optimization
framework OptiLab is intended to provide such service.

Figure 12. Main window of OptiLab

C. Parametric analysis
Parametric analysis can be viewed as a first part of the

optimization process. It is very simple and productive using
Agros2D and OptiLab. First an ordinary model is created with
ease using Agros2D graphical user interface. After prelimi-
nary calculations are carried out and the model is verified,
parametric analysis may start. Almost any number quantity
defining shape, material properties or boundary conditions can
be replaced by a variable defined in the startup script. This
may be useful alone, but becomes extremely important after
conversion of the model into Python script. All such defined
variables may be controlled using the script itself (say, using
for-cycle) or using diagnostic tools of OptiLab.

The OptiLab application is intended primarily as a man-
agement tool for results of multiple calculations analysis,
no matter how it has been obtained, e.g. simple parameter
sweep, optimization using gradient methods, genetic algo-
rithms, multi-criteria optimization, etc. Its role is in managing
sets of results described by design parameters such as geometry
dimensions, material properties, etc. and calculated quantities,
such as point values, integral values, etc. Entries corresponding
to individual calculations may also contain images, graphs,
convergence information and other more complex results, so
that the analysis may be performed on those calculated data
only without the necessity to perform time-consuming finite
element calculations again.

D. Optimization algorithms
Optimization is a more advanced step in the engineering de-

sign, which automates the search of design parameters, which
has been described in the previous section. The work-flow,
however, does not differ much from the previously described
case. One also has to create a parametric model and can use
OptiLab for management of obtained parametric results and
to create various graphs, statistics, etc. The only difference is
the need of employment of some optimization algorithm. The
user can create his own, use some of standard optimization
algorithms implemented in some of Pythons scientific libraries
or use one of the tools provided in our framework. The only
thing that has to be done is to define optimization functionals
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Figure 13. Two variants of geometry design of inductor

based on results of the calculation of the model. We have
implemented some basic optimization algorithms, conjugated
gradients and genetic algorithms.

E. Multi-objective optimization

In some situations, it is not possible to define one functional
only, which should be maximized or minimized. In such cases,
more functionals may be defined, see, e.g., [8]. Than it is
not possible to find an optimal design, since the requirements
usually go against each other (such as maximization of output
power and minimization of energy consumption). Instead of
that, a Pareto front (such as example shown in Fig. 14)
is found. Designs on this Pareto front are all optimal in
a sense that it is not possible to improve one functional
without worsening the other one. Tools for a simple work with
multi-objective optimization are also included in the OptiLab
toolbox.

Figure 14. Pareto front as a result of optimization algorithm

The use of OptiLab is not restricted to multiple calculations
with Agros2D software. It can be used as a stand alone ap-
plication, provided that some other application would generate
data in a required format. It is allowed by the fact that even
though Agros2D, PythonLab and OptiLab are intended as
collaborating pieces of software (and by this collaboration a
maximal efficiency may be achieved), they can all work as
individual applications. This loose interconnection brings large

flexibility and allows to solve much more complicated and non-
standard problems that one huge, overcomplicated application
would permit.

F. Illustrative example
For the concrete examples of optimization of various en-

gineering problems, that have been done using our software,
we refer the reader to some of our previous works [8], [9],
[10]. In order to show what type of results can be obtained
using optimization tools we included sample results of one
such example. The goal was to optimize shape of a furnace and
an inductor used to heat up the metal. Two possible variants of
such design can be seen in Fig. 13. The goal was to maximize
heat generated inside the metal (x axis) and, at the same time,
minimize differences in temperature of various areas of the
metal (y axis in Fig. 14, respectively). Those two goals cannot
be achieved at the same time, so a Pareto front is formed by
optimal designs. Each point in the figure corresponds to one
calculation with different parameters. Large points are those
on the Pareto front. It is than a task for an expert to choose
appropriate trade-off.

VIII. ACKNOWLEDGEMENTS

This work was supported by the European Regional Devel-
opment Fund and Ministry of Education, Youth and Sports
of the Czech Republic (project No. CZ.1.05/2.1.00/03.0094:
Regional Innovation Center for Electrical Engineering - RICE)
and by the project GACR P102/11/0498 (Grant Agency of the
Czech Republic).

REFERENCES

[1] Karban, P., Mach, F., Kus, P., Panek, D., Dolezel, I. Numerical Solution
of Coupled Problems Using Code Agros2D. Computing 95 (2013), No.
1, Supplement, pp 381–408, DOI 10.1007/s00607-013-0294-4.

[2] Agros2D, http://www.agros2d.org
[3] Hermes, http://www.hpfem.org/hermes
[4] Solin, P., Cerveny, J, Dolezel, I. Arbitrary-Level Hanging Nodes and

Automatic Adaptivity in the hp-FEM. Math. Comput. Simul., 2008,
Volume 77, pp. 117–132.

[5] Wriggers, P., Nonlinear Finite Element Methods, Springer-Verlag, Berlin
Heidelberg, 2010.

[6] Deuflhard, P. , Newton Methods for Nonlinear Problems, Springer Series
in Computational Mathematics, Volume 35, 2004.

[7] Henrotte, F., Felden, M, vander Giet, M., Hameyer, K. The Eggshell
Approach for the Computation of Electromagnetic Forces in 2D and 3D.
COMPEL: The International Journal for Computation and Mathematics
in Electrical and Electronic Engineering 23 (2004), No. 4, pp. 996–1005.

[8] Di Barba, P., Dolezel, I., Karban, P., Kus, P., Mach, F., Mognaschi,
M.E., Savini, A. Multiphysics field analysis and multiobjective design
optimization: a benchmark problem. Inverse Problems in Science and
Engineering 22 (2014), No. 7, pp. 1214-1225.

[9] Mach, F., Kus, P., Karban, P., Dolezel, I. Optimization of the system for
induction heating of nonmagnetic cylindrical billets in rotating magnetic
field produced by permanent magnets. Computing 95 (2013), No. 1,
Supplement, pp 537–552.

[10] Mach, F., Kus, P., Karban, P., Dolezel, I. Optimized arrangement of
device for electrostatic separation of plastic particles ELEKTRO (2012),
pp 431–434.

ISMB14, 14th International Symposium on Magnetic Bearings, Linz, Austria, August 11-14, 2014 256


	MAIN MENU
	Front Matter
	Table of Contents
	Author Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Help

