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Abstract 

 
Analysis and experiment results of reactor plant turbomachine rotor model 

investigations are described. It is shown that application of linearization by feedback to 
produce the control algorithm allows system linearizing without use of bias current. The 
system linearized in this way has better dynamic qualities, particularly, the frequencies 
in rotor oscillation spectrum, which are different from rotation speed, are eliminated. 

 
 

1 Introduction 
 
JSC “Afrikantov OKBM” has developed the large test facility with flexible vertical rotor in electromagnetic 
suspension, which was designed subject to the conditions of equality between the number of natural frequencies and 
bending modes of reactor plant turbomachine rotor model. 

During the first test stage, the flexible rotor was balanced as a part of test facility using the program 
developed for calculation of residual unbalance. Balancing was performed sequentially with compensation of 
residual unbalance for each critical frequency of rotor model [1]. 

 

2 Investigations 
 
As is known, the electromagnet force depends non-linearly on current and gap between the rotor and 

electromagnet [2]. To linearize this nonlinear dependence, bias currents are usually used [3]. Coordinate nonlinearity 
is eliminated by introduction of coordinate feedback signal into the control signal. When using bias currents in the 
control system, the energy consumed by the electromagnetic bearing (EMB) increases and additional EMB positive 
hardness occurs. Without bias currents, the system is highly nonlinear that results oscillation spectrum frequencies 
(sub-and ultraharmonics) differing from rotation speed during rotor startup (Fig. 1). This fact increases the rotor 
oscillation net amplitudes (Fig. 2). 

To solve this problem, JSC «Afrikantov OKBM» used the non-linear feedback-linearized control 
algorithm. 

The suspension in radial direction is described by differential equations 
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where x, у – coordinates of rotor mass center, α , β  - rotation angles of rotor relative to у and х axes respectively, 

1l , 2l  - distance up to the upper and lower EMBs respectively, indices up  and low  show the electromagnetic 

forces effecting on the rotor from the upper and lower EMBs, J  - principal moment of inertia of the rotor, ω  - 
specified angular frequency of rotor rotation speed vs. z  axis. 
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Fig. 1 – Experimental 3D spectrum of rotor startup under PD control 
 

 

 
 

Fig. 2 – Experimental amplitude of rotor oscillations vs. rotation speed during startup  
with PD-regulator 
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Pairs of electromagnetic forces appearing in equations (1) are determined as follows 
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The concept of linearization by feedback is described in [2, 4] and consists basically in transition to new 
controls: 
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Values upx , upy , lowx , lowy  for rigid rotor are connected to variables x , y , α , β  by kinematic relations 

2121 lyy,lyy,lxx,lxx lowuplowup ααββ +=−=−=+= .  (4) 

The control currents can be selected such that the initial system (1, 2) becomes the linear one as per phase variables, 
e.g. 
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where 
2

00
01

SL
F = . The other currents are expressed by analogy. This control algorithm is designated as 

proportional-differential-linearizing control (PDL-control). 
On substitution of current expressions (5) to initial system (1) in view of kinematic relations (4), one will 

receive the linear system of differential equations, presented as matrix-vector form 

ζζζζ &&&& GCDM +−−=      (6) 

where ( )Tyxβαζ = , matrix M  defines the system inertia, matrix D , dissipative properties, matrix C , stiffness 

properties, matrix G , gyroscopic forces. 
Fig. 3 and 4 show the estimated startup of the rotor model with specified uniform unbalance of 10 µm when 

controlled by PD- and PDL-control. It is seen that in this case too, the PDL-control gives the notable advantage in 
rotor oscillation amplitude. Figs. 3 and 4: electromagnetic loading device (EMLD) – oscillation amplitudes in 
EMLD (upper rotor end), REMB1 – oscillation amplitudes in the upper EMB, REMB2 – oscillation amplitudes in 
the lower EMB. 
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Fig. 3 –PD-control     Fig. 4 – PDL- control 

 
Practical use of this control allowed system linearization and startup prior to nominal rotation speed of the 

rotor with acceptable rotor oscillation amplitudes including passing through the four critical frequencies. Oscillation 
amplitudes lessened as compared with PD-control without displacement currents (Fig. 5), the frequency spectrum 
expresses only the instantaneous rotation speed of the rotor, and sub- and ultraharmonics do not practically appear 
(Fig. 6). 

The non-linear control effectiveness differs from that of PD-control by considerable decrease (by ~30 
times) of subharmonics in the oscillation spectrum (see Figs. 1 and 6). 

 

 
 

Fig. 5 – Experimental amplitude of rotor oscillations vs. rotation speed during startup  
with PDL-control 
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Fig. 6 – Experimental 3D-spectrum of rotor startup under PDL-control 
 

3 Conclusion 
 

Rotor control algorithm synthesized using method of linearization by feedback was checked by 
experiment and analysis. This algorithm ensured system linearization and allowed practically 
complete excluding of sub- and ultraharmonics in the oscillation spectrum. 

Further, it is planned to perform analytical and experimental studies of the other rotor 
model control laws, such as linear quadratic and optimum control as per Н∞ criterion (transfer 
function norms). 
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