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Abstract

An important application area of magnetic bearings is machinery running in vacuum. Examples
include vacuum pumps, flywheels and spin wheels for space craft. Here even small rotor losses
can overheat the rotor because of the low heat transfer in vacuum. Therefore this project aims at
realizing a magnetic suspension with minimal rotor losses.

Thus a novel magnetic bearing structure has been developed. It can generate both radial and
axial forces and employs a minimal number of poles and soft magnetic composites as iron core
material for minimal losses.

This paper presents the new bearing structure and a control strategy for it. The designed
controller is verified in simulations and first experimental results are presented as well.

1 Introduction
Active magnetic bearings have become an attractive choice for applications with high demands on
the bearings like long service life at high rotational speeds, low maintenance costs and operation in
vacuum. The usage of standard components and compact bearing electronics have helped lowering the
system costs. Nevertheless there is ongoing research aiming at reducing the number of components.

One approach used is the integration of radial and axial bearing components into one unit. This
allows a common bias flux [1] or common coils [2] for both force directions. Thus the bearing
requires fewer parts and can be built more compact improving both rotor dynamics and system cost.

Another significant challenge arises from operation in vacuum. A rotor running in an air pressure
below 10 mbar becomes difficult to cool. Thus even the small rotor losses of a magnetic bearing
can lead to overheating. This can be addressed using a stator with minimal slot openings [3] or by
minimizing the bias flux [4].

This paper presents a novel magnetic bearing aiming at both problems. Radial and axial force
generation is integrated into one unit with a minimal number of poles and coils reducing both rotor
losses and system complexity.

2 Integrated Radial-Axial Bearing
The basic structure of the presented bearing is shown in Fig. 1. The front view on the left side shows
three teeth with one coil wound on each. It is at first glance quite similar to a three pole heteropolar
bearing [5]. The right part of Fig. 1 depicts the side view as a cross section through two of the stator
pole tooth. It shows how the three pole heteropolar structure has been extended with a back iron to
left. This way an axial bearing can be integrated.

The Fig. 1 denotes the flux caused by the current I1 while both I2 and I3 are zero. The main flux
ΦR11 flows through the pole tooth and enters the rotor trough the radial air gap causing the radial
magnetic force FR11. Inside the rotor the flux is divided into three parts: The main part is the axial
flux ΦA1 which leaves the rotor through the axial air gap causing the axial force FA1.
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A smaller part leaves the rotor through the other radial air gaps as flux ΦR12 and ΦR13. Both
cause radial forces which partly oppose the main force FR11 but are way smaller.

The other two control currents I2 and I3 form the same flux path’ rotated by 120° and 240°
respectively forming the total flux Φ1, Φ2 and Φ3 in each stator tooth. The sum of these

Φ1 +Φ2 +Φ3 = ΦA. (1)

is no longer zero which distinguishes this structure from a three pole heteropolar bearing and results
in a greater degree of freedom for the control strategy.

The radial flux Φ1, Φ2 and Φ3 can be controlled freely allowing the operation of the bearing
with minimal bias flux and therefore with minimal rotor losses. The axial flux ΦA can be used for
axial control. Since the structure shown in Fig. 1 can only pull the rotor to the left another combined
bearing is required on the other end of the rotor to complete the axial suspension.

Nevertheless the structure tightly couples all magnetic fluxes and therefore requires novel ap-
proaches to the position control. Therefore this paper presents both a simple linear approach and a
more sophisticated nonlinear one based on feedback linearisation.

3 Magnetic Circuit Analysis

As a precondition for the controller design a magnetic circuit model is required. The circuit proposed
here consists of only five branches as can be seen in Fig. 2. The first three branches represent each
one radial pole tooth. They consist of a magnetic resistance for the air gap Rmδ i and all the iron parts
RmFeZ. The air gap resistance can quite accurately described with

Rmδ i =
δi

µ0 Aδi
with i = 1 . . .4 (2)

where

Aδ1 = Aδ2 = Aδ3 = AR = A (3)
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Figure 1: Principle of the combined bearing
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represent the cross section of the radial air gaps and

Aδ4 = AA = caxA (4)

the cross section of the axial one with the cross section ratio cax.
The resistance of the iron parts is more difficult to calculate. As can be seen in Fig. 1 the magnetic

field is a complex three dimensional one. So analytical methods can only give a rough estimation.
The approach used here is to trace the flux lines in each part to estimate a medium iron path length
and to use the largest cross section along the path as effective iron cross section AFe in

RmFe ≈
lFe

µR µ0 AFe
(5)

to estimate the magnetic resistance of the iron parts. The same approach is used for the axial branch
consisting of RmδA and RmFeA which model the flux flowing through the axial face of the rotor.

This leads to an equation system which fully describes the current-flux relationship in the bearing.
Let Rm ∈ R4x4 be the resistance matrix, Φ = [Φ1 Φ2 Φ3 ΦA]

T the magnetic flux vector, i= [I1 I2 I3 0]T

the current vector and the scalar w the number of windings around each pole. The equation

w i = RmΦ (6)

with

Rm =


Rmσ+RmFeZ+Rmδ1 Rmσ Rmσ Rmσ

Rmσ Rmσ+RmFeZ+Rmδ2 Rmσ Rmσ

Rmσ Rmσ Rmσ+RmFeZ+Rmδ3 Rmσ

Rmσ Rmσ Rmσ Rmσ+RmFeA+RmδA

 (7)

then describes the magnetic circuit given in Fig. 2.
If the magnetic resistance of the iron and the stray flux is neglected and after substituting for the

magnetic resistances according to (3) and (4) one arrives at the equation system

δ0

µ0 cax A

 cax +1 1 1
1 cax +1 1
1 1 cax +1

 Φ1
Φ2
Φ3

= w

 I1
I2
I3

 (8)

which is more suitable for analytic studies.
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Figure 2: Equivalent magnetic circuit
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With the possibility to calculate the resultant flux vector induced by a set of input currents through
solving the linear system in (6) or (8) for Φ the forces generated by the magnetic bearing on a rotor
can be calculated. Each of the four forces can be expressed with Einstein summation convention by

Fi =
Φi

2

2 µ0 Aδi
with Φi = R−1

mi j
I j w, j = 1 . . .3, i = 1 . . .4. (9)

These can be mapped on the Cartesian reference frame with

Fx =

√
3

2
(F2 −F3)

Fy = F1 −
1
2
(F2 +F3) (10)

Fz =−F4.

To improve the accuracy of the analytical model, magnetic force measurements were conducted and
the results were used to correct the values for the magnetic resistances. More details may be found in
[6].

The measurement results also indicated the existence of a significant stray flux Φσ . Therefore a
stray path with Rmσ was introduced into the model and identified from the measurement results.

4 Linear Position Controller

In order to demonstrate that the new bearing can be controlled with minimal computational effort a
simple decentral linear controller was designed. A precondition for such a controller is the existence
of a controlling quantity with a linear relationship to the bearing force for each bearing axis. Neither
winding current exhibits such a behavior. Therefore virtual control currents Ix and Iy are introduced.

Since the arrangement of the three stator poles, which are set 120° apart, is similar to a three
phase machine the inverse Clark transformation is a first possibility to calculate the winding currents
I1, I2 and I3 from the control currents Ix and Iy in a Cartesian reference frame [5].

 Ic1
Ic2
Ic3

=

 0 1
1
2

√
3 − 1

2

− 1
2

√
3 − 1

2

[
Ix
Iy

]
(11)

ic = Tc ixy (12)

The the sum of the resulting currents will always be zero. This is necessary for a heteropolar three pole
bearing but the structure presented here with its axial flux does not need this restriction. Therefore a
bias current I0 can be introduced for linearising the force-current relationship.[

I1 I2 I3
]T

=
[

Ic1 Ic2 Ic3
]T

+ I0 (13)

Usually a magnetic bearing is designed for a maximum current Imax because of thermal considerations.
If Ix runs from −Imax to Imax the maximum current is not reached in windings one and two. The
bearing is therefore not fully utilized. One can either use a different limit for Ix or change the
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transformation matrix as follows. I1
I2
I3

=

 0 1
1 −1

−1 −1

[
Ix
Iy

]
+ I0 (14)

i = Ti ixy + I0

As a side effect the force-current curves become more linear. Additionally the controller calculations
are simplified because the winding currents are calculated from the control currents with only a few
add and subtract operations.

This control law can be applied to the simplified bearing model in eq. (8) to derive the bearing
forces depending on the control currents. Both bearing forces depend on both. If one sets Iy = 0 for
Fx and Ix = 0 for Fy the main force-current relationship

Fx,x =
√

3 µ0 w2 A
I0

δ 2
0
· cax

cax +3
· Ix with Ix 6= 0 Iy = 0 (15)

Fy,y =
2 µ0 w2 A

δ 2
0

·
I2
y + I0 cax Iy

cax +3
with Ix = 0 Iy 6= 0 (16)

becomes clear under the assumption that the rotor is at the magnetic center. While the result for Fx is
linear, the relationship for Fy contains a quadratic term. Both can be rewritten as follows.

F∗
x,x =

Fx,x

F0
=

√
3

2
I∗x with F0 = 2 µ0 w2 A

I2
0

δ 2
0
· cax

cax +3
(17)

F∗
y,y =

Fy,y

F0
=

I∗y
2

cax
+ I∗y I∗x =

Ix

I0
=−1 . . .1 (18)

I∗y =
Iy

I0
=−1 . . .1

The relative linearity error therefore equals c−1
ax . It follows that the axial air gap cross section area

should be at least five times the radial one to get good performance from the linear controller.
The cross coupling in the current-force relationship can be seen if Ix = 0 is set for Fx and Iy = 0

for Fx.

Fx,y = 0 with Ix = 0 Iy 6= 0 (19)

Fy,x =−µ0 w2 A
2δ 2

0
· I2

x with Ix 6= 0 Iy = 0 (20)

So there is no cross coupling for Fx and a quadratic one for Fy. This can be transformed into

F∗
y,x =− (cax +3)

4cax
· I∗x

2 with F∗
y,x =

Fy,x

F0
and I∗x =

Ix

I0
=−1 . . .1 (21)

showing that the cross coupling force can only be influenced by the cross section ratio cax but not
significantly.

Because of the nonlinear nature of this cross coupling a linear controller cannot be used for
decoupling.

These findings are confirmed by the measurement results in Fig. 4 which were obtained with the
prototype shown in Fig. 3 with its the technical data summarized in Tab. 1. Each diagram shows
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Figure 3: Prototype

Table 1: Technical data of the designed bearing

bore diameter 45 mm
outer diameter 90 mm
axial length 40 mm
nominal flux density 0.8 T
nominal current 5 A
nominal force 74.2 N
cross section ratio cax 5.8
force/current factor along x-axis 23.8 N A−1

force/current factor along y-axis 27.8 N A−1

force/displacement factor along x-axis 55.5 N mm−1

force/displacement factor along y-axis 55.5 N mm−1

the bearing forces in the x- and y-axes depending on one of the control currents. The measured data
points represent actual measured forces and the model data has been calculated based on the magnetic
circuit model as shown it Fig. 2 and eq. (6). The cross coupling resulting from Iy in the left diagram
of Fig. 4 results from an imperfect centering of the rotor inside the stator during the measurements.

Since the winding currents I1, I2 and I3 are used for the axial control loop as well the control law
in (14) has to be extended to include an axial control current Iz. For the combined bearing on the left
end of the rotor eq. (14) can be written as

iL = Ti ixy,L + I0 − Iz

and for the bearing on the right end of the rotor as

iR = Ti ixy,R + I0 + Iz.

Because this technique effectively changes the bias current for, the radial forces Iz should be limited
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Figure 4: Measured and modelled force-current relationships
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to |Iz|< 1
3 I0 and the winding currents to 0 ≤ Ii ≤ Imax in an implementation.

Based on the measured force current curves at different rotor positions both the current/force and
force/displacement ratios could be determined for all five control axes and used to design decentral
PID controllers for each axis. The bearing stiffness was set to 8 times the natural stiffness and a
damping ratio of 0.8 was chosen.

5 Position Control with Minimal Bias Flux
As the bias flux of the bearing is reduced the force-current relation becomes more and more nonlinear
hence the controller presented in the last section cannot be used any more. A nonlinear control
approach is needed to stabilize the bearing in a low-current working-point. As a quite accurate
mathematical model of the bearing exists and has been verified with force measurements a feedback
linearisation approach can be used to compensate the nonlinearity. This technique was successfully
applied to voltage controlled ([7]) and current controlled ([8]) 3-pole active magnetic bearings.
Feedback linearisation gives a linear and controllable system which can easily be stabilized with a
PID controller.

As a prerequisite the magnetic model derived in eq. (6) has to be extend by a mechanical model
of the rotor. To simplify the Lagrangian dynamic equations of a rigid rotor with mass m we introduce
the reduced rotor mass mred for each bearing calculated from the rotor’s length l ∈ R, it’s moment of
inertia in the center of gravity Jc ∈ R (Jc = Jxx = Jyy) and the lengths l1, l2 ∈ R from the center of
gravity to the bearings:

mred,L =
ml22 + Jc

l2 mred,R =
ml12 + Jc

l2 (22)

Using these as mass points it is possible to retrieve two separate systems of differential equations
approximating the rotor dynamics. One combined bearing can be described in state space as

ẋ = f(x, i) (23)

ẋ1 = x2 ẋ3 = x4 ẋ5 = x6

ẋ2 =
3

∑
i=1

(R−1
mi j

I jw)2

2 µ0 AR mred
sin(αi) ẋ4 =

3

∑
i=1

(R−1
mi j

I jw)2

2 µ0 AR mred
cos(αi) ẋ6 =

(R−1
m4 j

I jw)2

2 µ0 AA m

(24)

with the state vector x = [x ẋ y ẏ z ż]T, the input vector i = [I1 I2 I3 0]T and j = 1 . . .4. The outputs are
defined as yi = hi(x) = x2i−1 with i = 1 . . .3. The angles αi define the position of the poles on the
stator.

This system is not affine and therefore standard feedback linearisation theory as described in [9]
is not applicable. However, [10] describes a method to calculate the relative degree for general SISO
(single input single output) systems. This definition can be extended to general MIMO (multiple
input multiple output) systems in the form ẋ = f(x,u) with m inputs ui and m outputs yi = hi(x,u) by
using the Lie-derivatives and yields

1. ∂

∂u j
Lk

f hi(x,u) = 0 for all k < ri

2. Ai j(x) = ∂

∂u j
Lri

f hi(x0,u0) is not singular

for the calculation of the relative degree ri with i, j = 1 . . .m.
Applying this to system (24) gives a relative degree of r1 = 2, r2 = 2 and r3 = 2 and a non

singular matrix A(x) ∈ R3x3. This allows a coordinate transformation to a new state vector ξ which
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has ∑
m
i=1 ri = 6 state variables and the components

ξi j = Li−1
f h j(x, i) with i = 1 . . .r and j = 1 . . .m. (25)

The new linear system with the virtual input v for one bearing is now

˙ξ11 = ξ21
˙ξ12 = ξ22

˙ξ13 = ξ23

˙ξ21 = L2
f h1(x, i) =

v1

mred

˙ξ22 = L2
f h2(x, i) =

v2

mred

˙ξ23 = L2
f h3(x, i) =

v3

m
(26)

The transformation from virtual input v to real system input i is achieved with a control function
retrieved by solving the following system for i

v(x, i) =

 L2
f h1(x, i)mred

L2
f h2(x, i)mred

L2
f h3(x, i)m

=



3

∑
i=1

(R−1
mi j

I jw)2

2µ0AR
sin(αi)

3

∑
i=1

(R−1
mi j

I jw)2

2µ0AR
cos(αi)

(R−1
m4 j

I jw)2

2µ0AA


(27)

With a closer look at equation (27) one finds that the virtual inputs are the main axis forces between
bearing and rotor v(x, i) = [Fx,Fy,Fz]

T. This makes it easy to handle v as it represents a real physical
quantity in the magnetic bearing.

The linear system states x5 and x6 are the axial position and velocity of the rotor. Since the two
combined bearings at both ends of the rotor share these states it follows that these states must be
combined for both bearings. Using the property that the virtual inputs v3,L of the left bearing and v3,R
of the right bearing represent axial forces on the rotor with opposite directions, one can write for the
axial movement

z̈ =
v3,R − v3,L

m
(28)

and combine it with the equations for radial states ˙ξ11, ˙ξ21, ˙ξ21, ˙ξ22 of the linear system in eq. (26).

Introducing the input vaxial = v3,R − v3,L gives a system ˙̃
ξ = f̃(x, ṽ) with five equations, five virtual

inputs and five outputs. This system reduction leads to the mapping

ṽ = [v1,L v1,R v2,L v2,R vaxial]
T 7→ v = [v1,L v1,R v2,L v2,R v3,L v3,R]

T (29)

which is a under-determined relation. Therefore the equations i(x, ṽ) will be under-determined too.

The simple structure of the linear mathematical model ˙̃
ξ = f̃(x, ṽ) makes it immediately clear

that there exists a one to one relation of input ṽi to output yi. Uncoupled systems like this can be
stabilized by independent controllers. Therefore five PID controllers are designed in a way that each
decoupled part behaves like a damped mass-spring system. From given stiffness and damping values
it is possible to directly get the controller parameters.

The virtual inputs as calculated by the PID controllers are transformed to real system inputs
by equation (27). This is a non trivial calculation as the equation system i(x, ṽ) is nonlinear and
under-determined. A standard approach would be the Newton-Raphson method. On a embedded
device operating in real time an iterative algorithm is not applicable. A algorithm to approximate the
solution in an appropriate time is presented. It uses the physical relation that virtual inputs are the
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main axis forces ṽ(x, i) = Fmain.
The first step is to calculate the minimal pole forces F1, F2 and F3 needed to generate the radial

main forces Fx and Fy as described in [11]. The mapping from pole to main forces as described by
equation (10) is a under-determined equation system and therefore it is possible to choose F1 freely
and then calculate the remaining pole-forces with equation (10). This yields

F1 =


0 if Fy <

|Fx|√
3

Fy +
|Fx|√

3
else

F2 = F1 −Fy −
Fx√

3
F3 = F1 −Fy +

Fx√
3

(30)

and is an exact solution for the radial forces. Because of the bearing topology a radial flux always
implies an axial one and therefore the radial forces always imply an axial force. From the magnetic
circuit in Fig. 2 we get the mesh equation

0 = Rmσ Φ1 +Rmσ Φ2 +Rmσ Φ3 +(Rmσ +RmFeA +RmσA)Φ4 (31)

in which eq. (9) can be used to substitute for Φ to get

F4 imp =
±
√

F1 ±
√

F2 ±
√

F3

k
with k =

Rmσ +RmFeA +RmσA

Rmσ

√
AA

AR
(32)

which can be used to calculate the minimal implied axial force F4 imp.
Note that the forces are always directed toward the poles. Nonetheless the calculation yields

an undetermined sign for each force in (32). This is due to the fact that the flux Φi can have two
directions (into or out of the rotor) for the same force Fi. The sign of Φi of needs to be propagated
through to make the balance valid. To determine the right sign one has to know the flux directions
and therefore the current directions.

With the knowledge of the minimal implied axial forces of each bearing it is possible to use the
systems under-determination to control the resulting axial force. The given axial force vaxial = Fz can
be achieved with any valid combination of v3,L = F4,L and v3,R = F4,R. Which axial force has to be
increased and by which amount can be calculated with F∆ = (F4 imp,R −F4 imp,L) by

F4,L =

{
F4 imp,L if F∆ < Fz

F4 imp,L +F∆ −Fz if F∆ ≥ Fz
F4,R =

{
F4 imp,R if F∆ ≥ Fz

F4 imp,R +Fz −F∆ if F∆ < Fz
(33)

Now for each Bearing the three minimal radial forces and the required axial force are known. At this
stage the calculations for one of the bearings are complete, as its axial force remains the minimal
one as stated by (33). For the other bearing the balance equation (32) is not fulfilled any more, as the
axial force was increased without changing the radial components. To re-balance the forces one can
use the fact that the radial forces can be increased all by a the same amount F0 without changing the
resultant main forces Fx and Fy. This can be expressed as

0 =±
√

F1 +F0 ±
√

F2 +F0 ±
√

F3 +F0 ±
√

F4k (34)

and then be solved for F0. This is a smaller nonlinear problem than the original system (27).
However it requires an iterative solving approach as well. To circumvent this we use the linear Taylor
approximation for square roots around F0k−1 which is the value of F0 from the previous calculation.
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For f (F0) =
√

F1 +F0 this gives

T (F0) = f (F0k−1)+ f ′(F0k−1)(F0 −F0k−1) =
√

F1 +F0k−1 +
1

2
√

F1 +F0k−1

(F0 −F0k−1) (35)

Replacing all square roots in (34) in the same manner as (35) and introducing F̃1 = F1 +F0k−1 etc.
the resultant force vector Fres can be calculated by

F0 =
±
√

F̃1 ±
√

F̃2 ±
√

F̃3 ±
√

F4k

∓ 1

2
√

F̃1
∓ 1

2
√

F̃2
∓ 1

2
√

F̃3

+F0k−1 Fres =


F1 +F0
F2 +F0
F3 +F0

F4

 (36)

With all forces known for both bearings one can calculate the winding currents with

Φi =
√

2µ0AiFres,i w i = RmΦ (37)

Note that the forces are always positive and the current directions have to be used as defined for
equation (32).

6 Simulation Results
To verify and optimize the proposed control schemes simulations have been carried out. A complete
5-axis suspension with a stiff rotor has been modelled using the magnetic circuit model as outlined in
Fig. 2 and eq. (6). The rotor was suspended horizontally with the gravity pointing down the y-axis.
The PID controllers were implemented as using the discrete PITD2-algorithm with a sampling rate of
21.3 kHz.

Both control schemes were tested using a 10µm step on the reference signal on either the
x-axis and the y-axis. The results achieved with the linear control scheme are shown in Fig. 5 and
demonstrate that the control scheme can be used to stabilize the proposed bearing structure. In the
step response for the x-axis a small movement of 1.9 % of the step distance along the y-axis can be
seen. This is caused by the cross coupling derived in eq. (20).

While the x-axis step did have little effect on the z-axis, the z-axis step response shows a significant
effect of the z-axis movement on the y-axis which carries the rotor weight and has therefore a non-zero
control current. The z-axis controller effectively changes the bias for the radial forces and therefore
changes the force-current ratio and in turn causes a disturbance on the y-axis.

These effects can be solved by applying the feedback linearisation as is demonstrated by the step
responses in Fig. 6. These show no significant effects of cross coupling. What is more the nonlinear
control scheme shows nearly the same performance as the linear controller while requiring much less
magnetic bias.

7 Conclusion and Outlook
A new magnetic bearing structure which combines both radial and axial force generation in one
compact unit has been presented. The proposed magnetic circuit model has been verified by force
measurements and is used to design both a linear and a nonlinear control scheme. It has been shown
that the bearing can be linearised quite well with the introduction of a bias current. Although there
remains some coupling between the bearing axes the system shows good performance. The only
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notable exception is the cross coupling of the axial bearing control loop on the radial ones. It acts as
a significant disturbance on the radial axes and must therefore be limited in its performance.

The second proposed control scheme clearly demonstrates that these limitations can be overcome
with a feedback linearisation approach. Additionally this allows minimizing the magnetic bias and in
turn both stator and rotor losses.

Further efforts will concentrate on finishing the test rig which then can be used to verify the
presented control schemes at standstill and up to the nominal speed of 30000 rpm.

So far the linear control scheme is based on an empiric approach to determine the transformation
matrix between the control currents and the winding currents. It is planned to study more systematic
approaches as outlined for example in [12] which may allow the inclusion of the axial axis into the
linearisation scheme.
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Figure 5: Simulated step responses with linear control
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Figure 6: Simulated step responses with nonlinear control
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As implemented now the feedback linearisation is based on the full model which sets high
demands on the controller hardware. It can be assumed that this is not necessary to reach a good
controller performance. Therefore further studies will try to find an optimal balance between
computational effort and controller performance.
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