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Abstract 
 

 In high-speed flywheel energy storage system, the high ratio of the polar to transverse mass 
moments of inertia of the flywheel rotor and the high operating speed have a great effect on the 
stability of the flywheel rotor system, traditional decentralized controllers, such as PID, are very 
difficult to deal with such rotor instability due to significant gyroscopic effect. In order to 
realize effectively the stability of active magnetic bearings(AMBs) supporting flywheel rotor 
system with strong gyroscopic effect at high rotating speeds, a new method called modal 
decoupling control is proposed in this paper based on mathematic model of the AMBs high-
speed rigid flywheel rotor system. The principle of the modal decoupling control is introduced, 
and its ability and effectiveness to control the dynamic characteristics of the AMBs high-speed 
rigid flywheel rotor system are numerically analyzed and compared with the traditional PID 
controller. It is shown that the modal decoupling control proposed can separately regulate each 
mode’ stiffness and damping through decoupling between the conical and the parallel modes, 
and obviously improve the dynamic behaviors and be capacity of stabilizing the AMBs high-
speed rigid flywheel rotor system with strong gyroscopic effect in the high rotating speed region. 

 
 

1 Introduction 
 
In flywheel energy storage systems, a flywheel stores mechanical energy that interchanges in form of electrical 
energy by means of an electrical machine with a bidirectional power converter. The flywheel energy storage systems 
are suitable whenever numerous charge/discharge cycles (hundred of thousands) are needed with medium to high 
power (kW to MW) during short periods (seconds).  

In order to maximize the energy density and the energy efficiency, the rotating speed of the flywheel should be 
as high as possible and the polar mass moment of inertia of the flywheel rotor should be as large as possible. Active 
magnetic bearings(AMB) is the best choose, in the support structure of a high speed flywheel energy storage system 
because of its no contact, no wear, no need of lubrication and dynamic adjustable. Therefore, the high-speed 
flywheel which is supported on magnetic bearings and made by composite materials is being considered as a 
promising and attracting one.  

In the high-speed flywheel system, the high ratio of the polar to transverse mass moments of inertia of the 
flywheel rotor and the high rotating speed, the gyroscopic effect becomes more significant, which have a great effect 
on the stability of flywheel rotor system and greatly increase the complex of the control system, and may result in 
rotor instability in some cases. Traditional decentralized controllers, such as PID, are very difficult to deal with such 
instability due to significant gyroscopic effect[1-3]. In order to deal with such rotor instability, it is necessary to 
develop some advanced control methods.  

In order to stabilize the high-speed flywheel system with strong gyroscopic effect, various control methods are 
presented. They are classified into two kinds, one is based on the modern control, such as sliding mode controller[4,5], 
μ  synthesis controller[6,7], robust gain-scheduled H∞  controller[8.9], LQR controller[10,11], These control can get a 
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good performance, but it is difficult to realize due to more large time-consuming. The other is based on the 
traditional decentralized controller with cross-feedback[12-15], which has a simple structure and good performance, 
but designing a good control is not so easily due to the couple between different modes. 

A new method called modal decoupling control is proposed in this paper based on mathematic model of the 
AMBs high-speed rigid flywheel rotor system. The principle of the modal decoupling control is introduced, and its 
ability and effectiveness to control the dynamic characteristics of the AMBs high-speed rigid flywheel rotor system 
are numerically analyzed and compared with the traditional PID controller and the cross-feedback controller. It is 
shown that the modal decoupling control proposed can separately regulate each mode’ stiffness and damping of the 
AMBs high-speed rigid flywheel rotor system through decoupling between the conical and the parallel modes, and 
obviously improve the dynamic behaviors and be capacity of stabilizing the AMBs high-speed rigid flywheel rotor 
system with strong gyroscopic effect in the high rotating speed region. 
 

2 Model of the AMBs-Rigid Flywheel Rotor System 
 
In the most high-speed flywheel energy storage systems, the bending critical speed of the flywheel rotor system is 
much more than the operating speed, so the flywheel rotor system is often considered as a rigid shaft. Figure 1 
shows the schemical of a simplified model of the vertically rigid flywheel rotor system supported by a pair of 
permanent material(PM) bearings located on the top and bottom sides and radically by two AMBs, the rotor 
positions are measured by four eddy current-type sensors.  
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Figure1: Schemical of the AMBs rigid flywheel rotor system 

 
In order to describe the motions of the flywheel rotor system, it is assumed that the axial line of the rotor is 

centralized as the geometric centers of two radial AMBs. Three coordinate systems are defined, which are sensor 
coordinate systems AsA s sAo x y and sB sB sBo x y , radial AMB coordinate systems bAbA bAo x y and bB bB bBo x y  and rotor 
coordinate system oxyz, respectively. All original points of coordinate systems are the geometric centre of two radial 
AMBs. The rotor coordinate system oxyz is fixed to the mass center of flywheel rotor system and z axis to the 
spinning axis of the flywheel rotor system. The x and y denote the linear displacements of the mass center of 
flywheel rotor along the x and y axes, respectively, and xθ and yθ the angular displacements of flywheel rotor about 
the x and y axes. The coordinates of the rotor at the upper sensor and the lower sensor positions are ( sAx , sAy ) and 
( sBx , sBy ). The coordinates of the rotor at the upper radial AMB and the lower radial AMB positions are ( bAx , bAy ) 
and ( bBx , bBy ). The relative positions between the sensors, radial AMBs and mass center of flywheel rotor system 
are also shown in Figure 1. 
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In order to simplify theoretical analysis, the following assumptions are made: a) coupling between the axial PM 
bearings and the radial AMBs is neglect; b) radial AMBs are symmetrical in geometry for the x and y axes and coils 
parameters in every polar are same; c) no coupling effect between magnetic poles in the radial AMBs; d) radial 
AMBs are isotropic and the AMBs magnetic forces are simplified by a linear model.  

For the motion of the rotor in the radial directions, the equations of motion of flywheel rotor system in x , y , xθ  
and yθ  are 

 
   

xA xB x

yA yB y

x y z x xA Ba xB Bb

y x z y yA Ba yB Bb

mx f f u
my f f u

J J f l f l

J J f l f l

θ ωθ

θ ωθ

= + +⎧
⎪ = + +⎪
⎨ − = −⎪
⎪ + = − +⎩

            (1) 

where m is the total mass of the flywheel rotor， x yJ J J= =  are transverse mass moments of inertia of the  
flywheel rotor around x and y axis， zJ  is polar mass moment of inertia of the spinning flywheel rotor around z axis, 
ω  is rotating speed about the spinning axis z. xu  and yu  are components of the rotor imbalance force in the x and y 
directions. xAf , yAf , xBf  and yBf  are magnetic forces acting on the flywheel rotor in the lower and the upper radial 
AMBs, which are 

 

xA sA bA iA xA

xB sB bB iB xB

yA sA bA iA yA

yB sB bB iB yB

f k x k i
f k x k i
f k y k i

f k y k i

= +⎧
⎪ = +⎪
⎨ = +⎪
⎪ = +⎩

                   (2) 

where ( sAk  iAk ) and ( sBk  iBk ) are force-displacement and force-current coefficients of the upper and the lower 
radial AMBs, respectively. ( xAi  yAi ) and ( xBi  yBi ) are control currents of the upper and the lower radial AMBs, 
respectively. 

The matrix form of the magnetic forces acting on the flywheel rotor can be expressed as  

 S b if K q K i= +                    (3) 

where T{       }xA xB yA yBf f f f f=  is the magnetic force vector acting on the flywheel rotor , SK and iK  are the force-
displacement matrix and force-current matrix of the ABMs, respectively. T

      [    ]xA xB yA yBi i i i i=  is control current. 

 T{        }b bA bB bA bBq x x y y=  is the generalized coordinate vector at the two radial AMBs. 11
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In Equation (2), ( bAx , bAy ) and ( bBx , bBy ) are the rotor coordinates at the upper and the lower radial AMBs, the 
transform relation between the rotor coordinates at the upper and the lower radial AMBs and the mass centre 
coordinates of the flywheel rotor system, x , y , xθ  and yθ  is 

 

1 0 0
1 0 0

0 0 1
0 0 1

bA bA y

bB bB
b b

bA bA x

bB bB

x l
x l x

q T q
y l
y l y

θ

θ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− ⎩ ⎭⎩ ⎭ ⎣ ⎦

                                       (4) 

Finally, the matrix form of the equations of motion of rigid flywheel rotor system is  

ss iMq Gq K q LK i U+ − = +                                                                (5) 



Modal Decoupling Control  Zhu, Zhang and Chen 

4 

where T{        }y xq x yθ θ=  ,
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, T
ss sK LK L= , T{0   0  }x yU u u= is rotor unbalance force vector.  

The transform function block of the flywheel rotor system based on the equations of motion of flywheel rotor 
system is shown in Figure 2. It is shown that the coupling between xθ  and yθ  is greatly depend on the ratio of the 
polar to transverse mass moments of inertia of the flywheel rotor and the rotating speed of the flywheel rotor. 
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Figure 2: Transform function block diagram of the flywheel rotor system 

 
For the decentralized PD controller, let its output current be  

 b bi Pq Dq= − −  (6)                            

where { }      b bA bB bA bBq x x y y=  is the generalized coordinate vector of two radial AMBs positions. 
( )      xA xB yA yBP diag p p p p=  is the proportional gain coefficient matrix, ( )      xA xB yA yBD diag d d d d=  is the differential 

gain coefficient matrix. When the AMBs are symmetrical, the proportional and the differential gain coefficients are 
same for every channel at the upper and the lower radial AMBs, i.e., xA yA Ap p p= = , xB yB Bp p p= = , xA yA Ad d d= = , 

xB yB Bd d d= = . 
Submitting Equation (6) to Equation (5), we have  

 = ( )ss f i b bM q G q K q L K P q D q+ − − +  (7) 

Since T
b fq L q= , so 

 + 0T T
ss f i f f i fMq Gq K q L K PL q L K DL q+ − + =   (8) 

Let T
c f i fK L K PL= ， T

c f i fD L K DL= , we have 

 ( ) ( ) 0c ss cMq G D q K K q+ + + − + =    (9) 
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 .

 
It is shown that cK  and cD  can be considered as the stiffness and damping proved by the PD controller. In order 

to make all polar points in the close system be in the negative half-plane, i.e., in order to stabilize the rotor system, 
cK  should be larger enough to compensate the negative stiffness matrix ssK . The damping matrix cD  should be 

positive in order to make the system be asymptotically stable, i.e., all eigenvalues of the close-loop system are in the 
negative half-plane. 

3 Principle of Modal Decoupling Control 
 
The purpose of the modal decoupling control is to separately regulate each mode’s stiffness and damping of the 
flywheel rotor system through decoupling between conical and parallel modes. Therefore, the first is to cancel the 
effect of the negative stiffness of AMBs by adding an equal and opposite stiffness to the current command signal in 
order to make the flywheel rotor become a free rotor to which the modal decoupling control can be applied. The 
second, an input transformation matrix inT  is added at the input side of the controller to convert the sensor 
displacements, Asx , Asy , Bsx and Bsy , to the displacements of mass center of the flywheel rotor system x , y , xθ  and 

yθ . The third, an output transformation matrix outT is added at the output side of the controller to convert the current 
command signals about the mass center displacements x , y , xθ  and yθ  to the current commands about the AMBs 
displacements , ,bA bB bAx x y and bBy . The block diagram of modal decoupling controller is shown in Figure 3. 
 

sAx sBx
sAy

bAx

bAy
bBx

bBy

xθ x

yθ y

Σ
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Figure 3: Block diagram of modal decoupling control 
 

From Equation (5), it is found that when bA bBl l≠ , i.e., the distance between the upper AMB to the mass center 
of flywheel rotor system is not the same as that between the lower  to the mass center of flywheel rotor system, the 
negative stiffness matrix ssK  is not diagonal, the decoupling effect will be weaken. It also means that when there is a 
displacement in the mass centre of flywheel rotor, the magnetic forces produced by the upper and lower AMBs are 
same for bA bBl l= , but different for bA bBl l≠ . The different magnetic forces will result in a moment in the flywheel 
rotor about the mass center of the flywheel rotor which will make the rotor tile. On the other hand, in order to 
directly apply the proportional and the differential parameters of the PD control to rotor modes, it is necessary to 
compensate the negative stiffness matrix ssK . 
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It is assumed that the control current for the power amplifier, i, is decomposed into a modal decoupling current 
ci  and a negative stiffness compensation current ki  i.e. 

 c ki i i= +       (10) 

Submitting Equation (10) to Equation (5), we have 

 ss f i c f i kMq Gq K q L K i L K i U+ − = + +  (11) 

In order to completely compensate the negative stiffness, the following relation must be satisfied. 

 0ss f i kK q L K i+ =                (12) 

Using the transform relation between the AMBs coordinates and the mass centre coordinates of the flywheel 
rotor system, b bq T q=  we have the compensation current ki   

 
1 1 1

k i f ss b bi K L K T q− − −= −    (13) 

Let 1 1
ss i f ssT K L K− −= , therefore 
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⎡ ⎤+ +
⎢ ⎥− − +⎢ ⎥= ⎢ ⎥+ − − +
⎢ ⎥

+ +⎢ ⎥⎣ ⎦

                        (14) 

For the decentralized PD controller, let the modal decoupling control ci  be 

 c s si Pq Dq= − −       (15) 

where ( )      xA xB yA yBP diag p p p p=  is the proportional gain coefficient matrix, ( )      xA xB yA yBD diag d d d d=  is the 
differential  gain coefficient matrix.  

The input of the decentralized PD controller is the signals from the sensors, i.e., sAx , sBx , sAy  and sBy , the 
relation between the sensor signals and the coordinates of the rotor mass center, x , y , xθ  and yθ , is  

       

sB sA
sA sB

sA sB sA sB

sB sA
sA sB

sA sB sA sB

sA sB
x

sA sB

sB sA
y

sA sB

l lx x x
l l l l

l ly y y
l l l l
y y
l l
x x
l l

θ

θ

⎧ = +⎪ + +⎪
⎪

= +⎪ + +⎪
⎨ −⎪ =
⎪ +
⎪

−⎪ =⎪ +⎩

              (16) 

It is shown that the input variation in any controller’s channel will result in the change of both linear and angle 
displacements of the rotor mass center. It means that the conical mode and the parallel mode are coupled each other. 
Therefore, the sensor coordinates sAx , sBx , sAy  and sBy  should transform to the rotor mass centre coordinates x , y  

xθ  and yθ . Using the relation between bq  and q , 1
b sq T q−= ，i.e., a relation matrix between the sensors and the 

PD controller 1
in bT T −=  adds in order to directly control the signals of the every modal coordinates, so 
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1 10 0
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sB sA
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l l l l
l l

l l l l
T T

l l l l
l l
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+ +⎢ ⎥⎣ ⎦

                      (17) 

It is clear that since the matrix f iL K  is not a diagonal matrix, so there is a coupling between the conical mode 
and the parallel mode. In order to decouple between the conical mode and the parallel mode in the output, it is 
necessary to add an output transformation matrix outT  to make the matrix f i outL K T  be a diagonal one. There are 
many choose for making the matrix f i outL K T  be a diagonal matrix, it is chosen if outL K T I=  in this paper, so 

 
1 1

1 0 0
1 0 01

0 0 1( )
0 0 1

sB

sA
out i f

sBi sA sB

sA

l
l

T K L
lk l l
l

− −

⎡ ⎤
⎢ ⎥−⎢ ⎥= =
⎢ ⎥−+
⎢ ⎥
⎣ ⎦

                (18) 

After the decoupling in the input side, the controller can directly adjust the any mode of the flywheel rotor 
system. In this case, the input signals of the control are the mass centre coordinates, not the signals of the sensors. 
Since the control forces are only provided by the AMBs, the moment signals must be transferred to the AMBs force 
signals, in order to decouple the input and output of the controller, the currents of the PD controller are 

 1 1 1( )c i f b bi K L P D T q− − −= − +           (19) 

Finally, the control currents of the modal decoupling control strategy is  

 
1 1 1= ( ) ( )c k i f ss b b out ss in bi i i K L P D K T q T P D K T q− − −+ = − + + = − + +  (20) 

With the modal decoupling control, the equations of motion of the flywheel rotor system are: 

Mq Gq Pq Dq U+ + + =                                                                     (21) 

( , , , )r p r pP diag p p p p=                                                                     (22) 

( , , , )r p r pD diag d d d d=                                                                      (23) 

where , ,r r pp d p and pd are proportional and differential coefficients of the modal decoupling control for conical 
mode and parallel mode, respectively. The negative stiffness compensation signal is 1 1 1

si s s sK L k L q− − − .  
From Equations (21)-(23), it is found that the conical mode and the parallel mode are independent, so stiffness 

and damping of the conical mode and the parallel mode can be separately controlled by varying the controller’s 
parameters , ,r r pp d p  or pd . On the other hand, the gyroscope matrix of the flywheel rotor system only affects the 
conical mode and does not affect the parallel mode, so the gyroscope effect on the flywheel rotor modes 
significantly decreases.  

 

4 Numerical Results and Analysis 
 
The basic parameters of the symmetrically rigid flywheel rotor supported on AMBs are: total mass of the flywheel 
rotor m=25.8 kg, distances between the rotor mass center and two radial AMBs center 

bAl =200 mm and 
bBl =-200 

mm distance between the rotor mass center and two sensor centers 
sAl =250 mm and 

sBl =-250 mm, transverse mass 
moment of inertia of the flywheel rotor system around the x and y axes  Jx =Jy =0.1151 kgm2, polar mass moment of 
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inertia of the flywheel rotor system around the z axis Jz=0.2388 kgm2, radial clearance of the two radial AMBs 
Co=0.4 mm, current stiffness coefficients of the two radial AMBs ik = 37.7 N/A , displacement stiffness coefficients 
of the two radial AMBs xk = 415.08 10  N/m− × , mass eccentricity of the flywheel rotor -61 10eμ = ×  m. 
 

4.1  Modes Analysis 

 
Figure 4 shows that the mode frequencies of the rigid flywheel rotor system with the rotating speed ω . The thick 
solid line is the synchronous speed. The flywheel rotor system both in no-rotating and rotating cases has two kinds 
of natural rigid body mode, i.e., conical mode and the parallel mode. The conical mode describes rotor tilt around its 
center of mass. The parallel mode describes the motion of the rotor mass center in xy plane, no any tilting in the 
flywheel rotor. When the rotor is spinning, the parallel mode frequency does not change any more with the rotating 
speed, it means the gyroscope effect does not affect the parallel mode, but the conical mode separates with the 
increase of rotating speed into nutation mode and precession mode. The nutation mode rotates in the same direction 
as rotor rotation, and precession mode in the opposite direction as rotor rotation. The nutation mode frequency 
increases with the rotating speed, but the precession mode frequency decreases.  
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Figure 4: Rigid body mode frequencies 
with rotational speeds 
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   Figure 5: Variation of eigenvalues of the flywheel rotor 

with the rotating speeds 
 
The variation of the eigenvalues of the flywheel rotor system with the rotating speed is shown in Figure 5, 

where σ  and jω  are the real and imaginary parts of the eigenvalue, respectively. The real part of the eigenvalue 
stands for the stability of the flywheel rotor system, and the imaginary part for the vibration frequency. The 
eigenvalues of the flywheel rotor system without rotating are shown by two circles for conical modes and two stars 
for the parallel modes. The real part of the precession mode in solid line increases with the rotating speed, but the 
real part of the nutation mode in dashed line decreases with the rotating speed. The real part and imaginary part of 
the parallel modes does not change any more with the increase of the rotating speed. In the high rotating speeds, the 
precession mode with a very high frequency is very difficult to control and may result in the system instability due 
to the time delay in the control system and limited bandwidths of power amplifiers and sensors. Both the real part 
and the imaginary part of the nutation mode are approach to zero, the stability of the flywheel rotor system becomes 
very weak, and may also result in rotor instability due to small damping and phase leg in the control system. 
Therefore, the stability of the flywheel rotor system is mainly determined by the conical modes. It is necessary to 
regulate the conical mode and the parallel mode frequency independently.  

The variation of mode frequencies of the flywheel rotor system with the decentralized PD controller with the 
proportional factor P at 0 rpm is shown in Figure 6. It is shown that both the conical mode frequency in solid line 
and the parallel mode frequency in dish line increase when the proportional factor P increases. Even when the 
conical mode frequency is close to zero, the parallel mode frequency is about 150 Hz. In such high frequency, it is 
difficult to get an appropriate mode frequency to improve system stability. Therefore, the decentralized PD 
controller can not separately regulate each mode’s stiffness and damping of the flywheel rotor system.  
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Figure 6: Mode frequencies variation with P at the decentralized PD controller 

                  
The variations of the conical and the parallel mode frequencies along with the proportional factor of the conical 

mode control channel rp  and the proportional factor of the parallel mode control channel pp  is shown in Figures 7 
and 8, respectively. It is shown that the conical mode frequency goes up as the proportional factor of the conical 
mode control channel rp  increases, whereas the parallel mode frequency always remains constant. Similarly, the 
parallel modes frequency goes up as the proportional factor of the parallel modes control channel pp  increases, 
whereas the conical modes frequency still remains constant. Hence, the parallel modes control channel and the 
conical modes control channel are totally independent, which allow us to regulate the different modes' stiffness 
through changing the proportional factor of the corresponding mode control channel.    
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Figure 7: Mode frequencies variation with rp  at 

modal decoupling control 
   Figure 8: mode frequencies variation  

with pp at modal decoupling control 
            
 

4.2  Rotor Motion Control 
 

The simulation result of motion track of the AMBs high-speed rigid flywheel rotor system with a suitable 
decentralized PD controller at 60000 rpm is shown in Figures 9 and 10. In the simulation, the initial positions of the 
rotor system in sensors center are [    ] [ 0.025  0.2  0.025  0.2]sA sB sA sBx x y y = − mm. It is shown that in this rotational 
speed, the rotor system with decentralized PD controller is stable, but the vibration decay is much slow. In practice, 
the rotor very easily loses it stability due to large time delay in the control system.  

Simulation results of motion track of the AMBs high-speed rigid flywheel rotor system with the modal 
decoupling control at the same initial positions as in Figure 9 and 10 are shown in Figures 11 and 12, it is shown that 
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the rotor vibration decay is much fast and the modal decoupling control is an effective way to constrain the 
gyroscopic effect of flywheel rotor and improve the stabilization of the AMBs flywheel rotor system. 
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locations with decentralized PD controller 
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In order to show the robust performance of the modal decoupling control for the disturbance, a step position 

disturbance is applied on the x direction of the upper sensor at the time of 0.4s and final displacement of 0.25mm. 
Since there is integration part in both decentralized PD controller and modal decoupling control, the final position of 
the x direction of the upper sensor should be at the position of (-0.25 0) mm.  The simulation results of motion track 
of the flywheel rotor system with decentralized PD controller at 60000 rpm after a step position disturbance are 
shown in Figures 13 and 14. It is also shown that for the decentralized PD controller, the final position is same, but it 
takes a long time, and the rotor vibrations are large. 
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The simulation results of motion track of the flywheel rotor system with modal decoupling control at the same 
conditions are shown in Figures 15 and 16. It is also show that for the decentralized PD controller, it takes a very 
short time to final position and the rotor vibrations are very small. Therefore, the modal decoupling control has more 
robust performance for the disturbance. 
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5 Conclusion 
 
A new method called modal decoupling control is proposed in this paper based on mathematic models of the 
flywheel rotor system. It is shown that the modal decoupling control can separately regulate each mode’s stiffness 
and damping of the AMBs high-speed flywheel rotor system through decoupling between the conical mode and the 
parallel mode, and obviously improve the dynamic behaviors and be capacity of anti-interference of the AMBs high-
speed flywheel rotor system with strong gyroscopic effect. 
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