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Abstract

Most of the industial active magnetic bearings (AMBs) are controlled by PID-Controllers.
Usually a time-consuming iterately procedure is involed to design those PID-Controllers. In this
contribution an optimization strategy is developed to design a complex PID-Controller. Multi-
Objective Genetic Algorithms (MOGAs) are employed as the core of the complex optimization
procedure to be used. The results are studied. Core of this contribution isthe development of
the optimization strategy, especially the combination of frequency and time domain-based com-
ponents as well as the strategy for complex PID-Controller design. For validation purposes, a
comparison between simulation and experimental results are presented inpart II of the contribu-
tion .

1 Introduction

Due to their advantages in comparison of conventional bearings, active magnetic bearings (AMB)
have been applied to various rotor systems. For an AMB system, the inherent negative stiffness
causes instability of the open loop of the system; therefore, a feedback control loop is employed to
stabilize the rotor system. So the controller design becomes a central task for designing the AMB
system. Different control methods are successfully applied to control magnetic bearing systems.
The classical PID-Control methods [PRv+05] are widely used in AMB systems due to their structure
and transparent design. An optimal method (LQ controller) [JP09, SB08] is used to obtain optimal
(high performance) solution concerning control energy andcontrol error. A drawback of these
methods is that the robustness properties are not explicitly taken into account and that all states are
needed to be used for feedback (therefore, an observer becomes necessary). Robust control methods
(H∞-controller [Wo11],µ-synthesis [MLA12]) are developed to cover up some drawbacks of LQ
methods, focusing on both performance and robustness of thecontrolled system. However those
methods result to high order controller which can cause implementation problems due to hardware
limitations.

Most of industry AMB systems are controlled by PID-like controllers including also complex
low-pass filter. Nowadays, rotor systems become more and more complex (because of higher energy
density, higher speed, more complex rotor structure, etc.). A classic PID-Controller with only 3 pa-
rameters (KP, Ti , andTd) is overwhelmed to achieve various requirement, thereforea more complex
controller structure is neccessary, e.g. PID-Controller with notch filter, lag-lead filter, and low-pass
filter. This complicates the controller design and requiresexperience to tune controller parame-
ters. The design procedure is hence iteratively and time-consuming. Motivated by this situation,
an optimization procedure is developed and suggested in thecontribution to design the controller
parameters automatically.

This paper is organized as follows: In Section 2 the models ofthe rotor system and the magnetic
bearing system are introduced. In Section 3 the controller design is focused. In Section 4 the detailed
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optimization strategy is presented, which is the core of this contribution. In Section 5, simulations
are performed and results are compared for two selected controller candidates from pareto front.
Finally, a summary is given in Section 6. In part II of the contribution, the experimental results are
presented for validation.

2 Modeling

An AMB-rotor system includes the rotor system to be controlled as explained in part II of the con-
tribution, sensors, analog-to-digital converters (AD-converters), controllers, digital-to-analog con-
verters (DA-converters), amplifiers, and actuators. At first modeling of the rotor system will be
discussed; secondly the model of the magnetic bearing system is given. The sensors are taken as
proportional transfer elements of second order (PT2) with an eigenfrequency out of the sampling
region of the system. Pulse-Width-Modulation (PWM) amplifiers are employed in the test-rig. Cur-
rent control configuration is chosen, so the amplifiers can bemodeled as part of actuators and treated
by proportional behavior. The AD-converters and DA-converters are considered by constant gains,
denoted by ADG and DAG, respectively.

2.1 Rotor System

The discretized model of the rotor (Figure 1) is modeled with29 nodes and totally 116 DoFs (each
node possesses 4 DoFs, i.e. translation and rotation in x- and y-plane). The equations of motion
result to

M q̈+(D+ΩG) q̇+Kq = Fw,

y = Cq,
(1)

with
M : Mass matrix, D: Damping matrix (proportional dampingD = γK ),
G: Gyroscopic matrix, K : Stiffness matrix,
F: Input matrix, C: Output matrix (corresponding to sensor nodes),
y: Measured nodes q: Displacement vector, q = [qT

1 ,q
T
2 , · · · ,q

T
29]

T

qi = [xi,yi,αi,βi]
T

Ω: Rotational speed, and w: Input force.
The equations of motion are transformed into a state-space representation using the state vector

xr = [qT , q̇T ]T by

ẋr = Arxr +Brur,

yr = Crxr,
(2)

where

Ar =

[
0 I

−M−1K −M−1(D+ΩG)

]

, Br =

[
0

M−1F

]

,

Cr =
[
C 0

]
, and yr = y,

with the system matrixAr of order 232×232, the input matrixBr of order 232×4, and the output
matrixCr of order 4×232.

The state-space model will be used for controller design. The eigenmodes of the rotor are shown
in Figure 2. It is known that the eigenmodes and eigenfrequencies of a rotor system are speed de-
pendent if gyroscopic effects are considered; the eigenmodes of the system in Figure 2 are displayed
for the rotor at rest, consisting of the first four bending modes.
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Figure 1: Discretized rotor model
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Figure 2: Eigenmodes of the rotor system
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2.2 Magnetic Bearing Model

According to the available test-rig, the differential drive configuration as shown in Figure 3 is em-
ployed to linearize the force-current relation of the actuator. In order to achieve current control,
an additional underlying current controller (P-Controller) is used to feedback the measured current
of the magnet coils. The whole actuator system [SM09] including magnets, amplifiers, and the
underlying current controllers, can be represented in state space form by

ẋm = Amxm +Bmum,

ym = Cmxm,
(3)

with the displacement of the bearing nodes and the control current as inputsum of order 8×1,
magnetic forces as outputsym of order 4×1, the state vectorxm of order 4×1, system matrixAm of
order 4×4, input matrixBm of order 4×8, and outputs matrixCm of order 4×4.

�I
xy

�F+
xI

F+
y

	F−
x RF−

y

*�
s0

�x

i0+ ix

i0− iy

i0+ iy

i0− ix

Figure 3: Actuator geometry (differential drive configuration)

2.3 Complete Model

Combining the sensor, the rotor, and the magnetic bearing models results to the complete plant
model

ẋ = Ax+Bu,

y = Cx,
(4)

with the state vectorx = [xT
s ,x

T
r ,x

T
m]

T (xT
s : sensor state vector of order 8).

The resulting plant possesses 244 states with 4 inputs and 4 outputs. The inputs of the plant are
control currents and outputs of the sensors are considered as the outputs of the plant. Numerical
parameters of the plant are given in Table 1.

In Figure 4 the bode diagram of the plant including sensors, rotor, magnetic bearings, AD-
converters, DA-converters, and transformation matrices (which transform sensor coordinates to cen-
ter of gravity coordinates and then back to bearing coordinates, detailed in the next Section) is
shown. It can be seen that the parallel mode and tilting mode of the plant are perfect separated due
to the symmetry of the rotor.
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Value Value

Mass of the rotor [kg] 12.4 Length of the rotor [m] 0.46
Bearing stiffnessks [N/m] -2.8e6 Force/current factorki [N/A] 250
Air gap s0 [m] 4.2e-4 Bias current [A] 5

Table 1: Numerical parameters of the system design
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Figure 4: Bode diagram of the plant

3 Controller Design

In this Section a so called ’Trans-Tilt’ (Translation and Tilting mode) PID-Controller design for the
AMB-rotor system is briefly described. Since the rotor is quite elastic, the first 4 bending modes
have to be considered by the controller design.

Firstly, the sensor-coordinates are transformed into the center of gravity coordinates using a
transformation matrix, resulting in x-plane as

xc =
1
2
(xl + xr),

β = (xr − xl)/ls,
(5)

or
[

xc

β

]

=

[ 1
2

1
2

− 1
ls

1
ls

]

︸ ︷︷ ︸

Transformation
matrix

[
xl

xr

]

. (6)

5



Improving PID-Control of AMB-Rotor System Design I: Optimization Strategy Wei and S̈offker

The indexes l, r, and c denote left sensor node, right sensor node, and rotor midspan node,
respectively. The distance of two sensor nodes is denoted asls.

The transformation allows the decoupling of ’parallel’ modes and ’tilting’ modes of the rotor.
An advantage obtained by this transformation is that the controller design can be achieved separately
for parallel mode and the tilting mode.

For parallel and tilting mode control, the same controller structure is used. The PID-Controller
consisting of 2 parts (PDT1 with filters and an integrator) is introduced. The first part is limited to
be an order of 7 due to hardware requirement. The first part of the PID-Controller can be written as,

KPD = KP

s
ωn0

+1
s

ωd0
+1

︸ ︷︷ ︸

PDT1

( s
ωn1

)2+2ξn1
s

ωn1
+1

( s
ωd1

)2+2ξd1
s

ωd1
+1

︸ ︷︷ ︸

filter 1 (F1)

( s
ωn2

)2+2ξn2
s

ωn2
+1

( s
ωd2

)2+2ξd2
s

ωd2
+1

︸ ︷︷ ︸

filter 2 (F2)

( s
ωn3

)2+2ξn3
s

ωn3
+1

( s
ωd3

)2+2ξd3
s

ωd3
+1

︸ ︷︷ ︸

filter 3 (F3)

,

= PDT1 ·F1F2F3.

(7)

It can be seen that the controller uses 15 parameters:KP, ωn0, ωd0, ωn1, ξn1, ωd1, ξd1, ωn2, ξn2,
ωd2, ξd2, ωn3, ξn3, ωd3, andξd3.

Furthermore, adding an integrator term to the controllerKPD gives the final PID-Controller struc-
ture to be used as

K = KPD+
KI

s
= PDT1 ·F1F2F3+

KI

s
. (8)

For the parallel and tilting mode control, two PID-Controllers with the same controller structure
as mentioned above are needed. The overall system considering x- and y-plane motions requires 4
PID-Controllers, i.e. two controllers (parallel and tilting mode) for each plane.

Finally, the control current (as controller output) has to be transformed back into bearing-
coordinates to be fed into the cooresponding actuators as,

[
il
ir

]

=

[
1 −1

1 1

]

︸ ︷︷ ︸

Transformation
matrix

[
ip
it

]

. (9)

The indexes p and t denote the parallel and tilting mode, respectively.
The parameters of two controllers (parallel and tilting mode) will be determined and optimized

in the next Section.

4 Optimization Strategy

As described in last Section, totally 30 parameters from theparallel and tilting mode controller have
to be choosen. The hand-tuning procedure can be time-consuming, especially if various (competing)
criteria has to be considered.

The solution idea of this contribution is to use the design parameters (controller parameters)
of the design process (AMB-rotor system) as parameters to beoptimized and to evaluate the re-
sulting system behavior with given criteria, taking into account the overall system requirements. It
is clear that this is a multi-objective optimization problem. The optimization task will be solved
by using MOGAs. Different MOGAs and MOEAs (Multi-ObjectiveEvolutionary Algorithms)
are available for solving such optimization problem. Ceollo [Coe98, Coe06] gives a survey about
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evolutionary-based optimization techniques. In papers [Coe98, Coe06] the most well-known MO-
GAs and MOEAs are introduced and related advantages and disadvantages are analysed. Fleming
and Purshouse [FP02] summarize evolutionary algorithms with the focus on the application of con-
trol engineering. In [Deb01] a detailed introduction of different evolutionary algorithms is given.

Among those optimization algorithms, NSGA-II (Nondominated Sorting Genetic Algorithm II),
which was introduced in the paper [DPAM02] by Deb et al., becomes very popular due to its compu-
tational efficiency. The optimization results of this contribution are obtained by using the MOGAs
(a variant of NSGA-II) from the global optimization toolboxin MatlabR©.

4.1 Evaluation of Fitness Functions

Diverse criteria have to be formulated as objectives (also called fitness functions). Some of these
criteria can be considered as constraints. This is a crucialpoint to use the MOGA. The optimiza-
tion problem can be solved quite efficient with well-defined fitness functions, on the contrary the
optimization can be failed due to non-convengence.

An another challenge arising from the control problem is therequirement for stability of the
closed-loop. The stability requirements of the closed-loop of the AMB-rotor system can be treated
either as a constraint during the optimization process or asan objective to maximize the stability
degreed as

d = 0−max{ℜ(λi)}, i = 1,2...n,

with ℜ(λi) denoting the real part of the i-th eigenvalue andn denotes the number of the eigenvalue
of the linear system.

This contribution presents a strategy for a hierarchical evaluation of the fitness functions for
MOEAs and MOGAs. With this strategy, the optimizer tries to shift the candidates to the stable
region of the closed-loop of the AMB-rotor system in the beginning period of the optimization
process. Once this step is successful, the other objectives(including time and frequency domain
criteria/performance ratios) become available to be optimized. There are two advantages following
this strategy:

1. The optimization process is accelerated, since more feasible (stable) candidates will be found
(if possible) in the beginning period of the optimization process for further optimization.

2. The probability that the optimization process will converge, increases.

It should be noted that a convergence can in principle not be guaranteed for those MOEAs and
MOGAs due to their randomized character (if the feasible region is isolated (too small) in the defined
search space). Certainly no global optimum even local optimum is guaranteed in principle for each
objective.

In the following, the recommended evaluation strategy of the fitness functions is given in detail.
Firstly, the fitness functions to be considered in the optimization of controlling AMB-rotor system
are given. Totally five objectives are formulated as fitness functions. The maximal singular value of
the sensitivity functionσ(Spt) is treated as the first objective. It is defined as the larger one of the
maximal singular value of parallel and tilting mode (see Section 3) sensitivity funcion (Sp andSt),
i.e.

F1 = σ(Spt) = max{σ(Sp),σ(St)}.

The damping ratio of the eigenvalue in the frequency region [0..300] Hz and (300..1000] Hz
are considered separately as two objectives, which are denoted asD[0−300] and D(300−1000]. The
first frequency region shall include the rigid body modes andthe first bending mode. Since the

7



Improving PID-Control of AMB-Rotor System Design I: Optimization Strategy Wei and S̈offker

optimization goal is to minimize the fitness functions, the inverse damping ratio is defined as fitness
function by

F2 = Dinv[0−300] =
1

D[0−300]
and

F3 = Dinv(300−1000] =
1

D(300−1000]
.

These three fitness functions mentioned above are related tothe frequency domain performance.
For controlling AMB-rotor system, the time domain performance also has to be considered. Hereby,
the overshootAos and the settling timetst of the step response of the AMB-rotor system are taken
into account; So two fitness functions cooresponding to the time domain performance,

F4 = Aos and

F5 = tst

are used.

The 5 fitness functions are evaluated with the strategy mentioned above for each individual in
current population as follows:

Step I: The sensitivityS and complementary-sensitivityT function matrix are calculated, as well
as their eigenvaluesλi. If the closed-loop is stable, the procedure continues withstep II,
otherwise

F1..F5 = max{ℜ(λi)}+constant A

is used to evaluate the fitness functions.

Step II: The maximal singular value of the sensitivity functions for the parallel and tilting mode (which
can be directly obtained fromS) are evaluated and the singular values of the sensitivity func-
tion σ(Spt) is defined. The inverse damping ratio of the eigenvalues is determined. Calculating
the step response of the closed-loop gives the overshootAos and the settling timetst. If the
values ofσ(Spt), Dinv[0−300], Dinv(300−1000], Aos andtst are not larger than a special suitable
choosen number, the procedure continues and goes to step III, otherwise

F1..F5 = max{ℜ(λi)}+constant B

is used.

Step III: If the conditions

σ(Spt)≤ 50, Dinv[0−300] ≤ 100, and Aos≤ 1000

8
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are fullfilled, the objective functions are defined as

F1 = σ(Spt),

F2 =

{

Dinv[0−300] if Dinv[0−300] ≥ 2,

2 if Dinv[0−300] < 2,

F3 =

{

Dinv(300−1000] if Dinv(300−1000] ≥ 20,

20 if Dinv(300−1000] < 20,

F4 =

{

Aos if Aos≥ 100,

100 if Aos< 100,
and

F5 =

{

tst if tst ≥ 0.3,

0.3 if tst < 0.3,

(10)

otherwise
F1..F5 = max{ℜ(λi)}+constant C

is used.

It should be mentioned that “optimal” values are defined for the fitness functionsF2..F5. If the
fitness function reaches the related “optimal” value, then this fitness function does not need to be
considered in the optimization process, therefore the optimizer focuses only on the other objectives.
This again accelerates the optimization process. The optimal values of the fitness functions are given
in Table 2.

Objective parameter “Optimal” value Description

Dinv[0−300] 2 (= 50% Damping ratio) Inverse damping ratio
Dinv(300−1000] 20 (= 5% Damping ratio) Inverse damping ratio
Aos [%] 100 Overshoot
tst [sec] 0.3 Settling time

Table 2: Defined optimal values of the fitness functions

The search space of the controller parameters are given in Table 3. It should be noticed that only
the part of the controllerKPD is considered for optimization. The integrator gain is determined by

KI = DCgain(KPD) ·2π ·1

and the whole PID-Controller (Equation 8) is used to evaluate the fitness functions. The test-rig
is designed to work with a maximal rotational speed of 15000 rpm, thus the rotor model with the
rotational speed of 15000 rpm is employed for the controllerdesign and optimization.

4.2 Optimization Results

The optimization results are shown in Figure 5. Each point from the Pareto front (see Figure 5
respresents an optimal solution, which is not dominated from other candidates. The upper right and
lower left plots show that the fitness functionσ(Spt) is competing with overshootAos as well as
inverse damping ratioDinv(300−1000], i.e. minimizing the max. singular valueσ(Spt) can only be

9
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KP ωn0 ωd0 ωn1 ξn1 ωd1 ξd1

Parallel
mode

Lower bound 9e3 50 100 100 0.05 80 0.05
Upper bound 3e4 150 2e3 1e3 1.00 1e3 1.00

Tilting
mode

Lower bound 1.5e3 60 100 100 0.05 100 0.05
Upper bound 4e3 180 2e3 1e3 1.00 1e3 1.00

ωn2 ξn2 ωd2 ξd2 ωn3 ξn3 ωd3 ξd3

Parallel
mode

Lower bound 100 0.05 100 0.05 300 0.05 300 0.05
Upper bound 1e3 1.00 1e3 1.00 1e3 1.00 1e3 1.00

Tilting
mode

Lower bound 150 0.05 150 0.05 300 0.05 300 0.05
Upper bound 1e3 1.00 1e3 1.00 1e3 1.00 1e3 1.00

Table 3: Search space of controller parameters

achieved with increasing the overshootAos and decreasing the damping ratio of the eigenvalues in
the frequency region (300..1000] Hz. The settling timetst reaches the defined optimal value (see the
lower right plot).
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Figure 5: Pareto front

Two candidates (A and B) from the pareto front with the smallest max. singular valueσ(Spt) are
selected for further simulation. The optimized objective values are given in Table 4. The resulting
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Objective Candidate A Candidate B

Sinuglar valueσ(Spt) 3.23 3.32
Damping ratio [0..300] Hz 11% 21%
Damping ratio (300..1e3] Hz 0.85% 0.99%
OvershootAos 277% 285%
Settling timetst 0.3 0.3

Table 4: Objective value of selected candidates

maximal singluar values of candidates A and B are corresponding to zone B according to the ISO
Stardard 14839-3. All eigenmodes of the closed-loop with controller candidate B in the frequency
region [0..300] Hz are well damped. In the next Section the detailed simulation results will be
presented.

It should be noted that the candidate has to be carefully selected from the pareto front. The
optimizer tries to present all nondominated solutions based on the defined fitness functions, conse-
quently, some outlier points are also found by the optimizerin order to form the whole pareto front.
However, those points are usually unacceptable for exampledue to known realization problems.

5 Simulation Results

In the last Section, two (example) candidates are selected for simulation and will be implemented.
In this Section the simulation results of the both candidates are given and compared.

KP ωn0 ωd0 ωn1 ξn1 ωd1 ξd1

Parallel
mode

Cand. A 1.84e4 137 1.10e3 412 0.40 486 0.56
Cand. B 1.25e4 86 1.47e3 182 0.48 178 0.65

Tilting
mode

Cand. A 2.10e3 119 808 787 0.35 565 0.67
Cand. B 2.08e3 115 683 343 0.71 285 0.72

ωn2 ξn2 ωd2 ξd2 ωn3 ξn3 ωd3 ξd3

Parallel
mode

Cand. A 622 0.38 464 0.46 667 0.68 652 0.81
Cand. B 390 0.57 328 0.68 935 0.63 639 0.40

Tilting
mode

Cand. A 828 0.75 657 0.70 718 0.51 768 0.56
Cand. B 586 0.68 452 0.59 639 0.51 548 0.39

Table 5: Parameters of selected controller candidates

The corresponding controller parameters of selected candidates are summerized in Table 5. In
Figure 6 the bode diagram of the controllers (including parallel and tilting mode controller) of both
candidates is shown. The Parallel mode controller of candidate A has a larger P-part (KP) compared
with the one of candicate B. The tilting mode controllers aresimilar at low frequencies but differ
from each other at high frequencies.

In Figure 7 the pole-zero map of the closed-loop is shown. It can be seen that the eigenmodes
up to the first bending mode are well damped for both candidates. The first bending mode are even
damped with more than 30% damping ratio.
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The singular values for parallel and tilting mode of both candidates are illustrated in Figure 8.
For the parallel mode large differences occur at low frequencies. The candidate A has a singular
value only about 30% of the one of candidate B in the frequencyregion [2..30] Hz. For the tilting
mode there is no remarkable difference.

The step response behavior is presented in Figure 9. The parallel mode of candidate A is superior
over the one of candidate B with respect to the overshoot of the step response, however the result is
quite similar for tilting mode.

The results above are determined with the rotor model at the rotational speed of 15000 rpm. In
oder to ensure the stability and performance for the system when the rotor is at rest, simulations are
neccessarily to be carried out. The simulation results (including the results with the rotor at rest) are
summarized in Table 6. The performance of the system has no noticeable change due to rotation.

6 Summary

This paper presents an optimization approach by using multi-objective genetic algorithms for fast
and optimal parameter design of a complex PID-Controller with respect to given requirements for-
muled in time and frequency domain. The challenges by using MOGAs/MOEAs are discussed and
a corresponding evaluation strategy is suggested. The simulation results show that a PID-Controller
of complex structure can be obtained/optimized by using MOGAs with the suggested evaluation
strategy considering various criteria, limitations, and performance aspects.

For validation purpose, the obtained controllers are implemented for experiments. Experimental
tests are performed and the results will be discussed in partII titled “ Improving PID-Control of
AMB-rotor System II: Experimental Results”.
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Figure 9: Step response of the closed-loop with the rotor model at the rotational speed of 15000 rpm

Candidate A Candidate B
0 rpm 1.5e4 rpm 0 rpm 1.5e4 rpm

Parallel
mode

Max. sinuglar value 3.08 3.23 3.05 3.32
OvershootAos 138% 132% 263% 258%
Settling timetst 0.28 0.28 0.15 0.15%

Tilting
mode

Max. sinuglar value 3.3 3.25 3.37 3.34
OvershootAos 275% 277% 283% 285%
Settling timetst 0.15 0.15 0.15 0.15%

Damping
ratio

[0..300] Hz 13.2% 10.9% 25.4% 21.7%
(300..1000] Hz 1.6% 0.85% 2.2% 0.99%

Table 6: Objective value of the selected candidates for rotational speed of 0 and 15000 rpm
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