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Abstract

We propose a physical model representing a non laminateak dbtust bearing system, ob-
tained via Maxwell’s equations, giving the magnetic vegtotential with eddy currents. We
show that this model is flat in a “practical” sense. In patécumotion planning of the magnetic
flux and eddy currents can be easily deduced.

Keywords. Maxwell equations, eddy currents, flathess motion plannagive thrust bearings,
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1 Introduction

As related by numerous authors [10], eddy currents in magtetist bearings (MTB) affect sharply
the magnitude and the dynamical response of magnetic forces

The aim of this paper is to present a control solution ablestdesa given magnetic flux in the
air-gap, by imposing the coil voltage, in a prescribed daratvhile being able to influence the eddy
current creation.

This problem constitutes a challenge not only since, adegrid Maxwell’s partial differential
equations [2], the system describing the dynamics of thenetagflux in the MTB is inherently of
an infinite-dimensional nature, but also because of the mxitp of the geometry of the domain
constituted by the bearing and the associated boundarytmord

Our purpose is to show that the infinite dimensional systestrilging the vector potential in
the MTB is flat in a "practical” sense, suitable to easily goilre above mentioned motion planning
problem (see also e.g. [8] or [3, 4] in the context of the heptagion). For finite dimensional
theoretic aspects and various applications of differéfititness the reader may refer to [5] (see also
[6, 8] in the particular context of magnetic bearing systems

The paper is organized as follows: Section 2 is devoted t@thsentation of the infinite di-
mensional thrust bearing system controlled by its coilagdt Its general solution is obtained,

*Corresponding author



Motion Planning for an Active Thrust Bearing System Turpault, Lévine, Da Silva

in Subsection 2.3.2, as a mixed series in trigonometric agsk&8 functions (see e.g. [9] for an
extensive introduction to Bessel functions). The notioriphtical” flatness is then presented in
Section 3, both in the time and frequency domains. The “pa#itflatness of our MTB system is
studied in Subsection 3.2 and, finally, an application toiomyplanning is described in Section 4.

2 Description of the thrust bearing system

We derive a model for the vector potential in a solid MTB witlhelots. This model takes the form
of a diffusion equation in several adjacent hollow cylirgl&ee Figure 1), with mixed Dirichlet-
Robin-Neumann boundary conditions and controlled by itbwadtage, whose expression is given
by:
do
U(t):RI(t)+Na(t) Q)
with N the number of windingsR the resistance of the coil ar{(t) the magnetic flux across the

air gap.
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Figure 1: Sectional view of a half MTB
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2.1 Choice of coordinates

Taking into account the symmetries of the problem, and idi@dar the invariance by rotation
around the rotor axis, we use cylindrical coordinates aedtat the rotor axis. The height coordinate
is denoted by and the radial one by, Due to the curl invariance, the angular coordintitioes not
appear explicitly in the equations and is therefore omitt¥d also denote the time lby

According to the magnetic properties of this system, theorguotential is oriented along the
ortho-radial direction. Hence it has only one non zero comembin this direction, which simplifies
the formulation of Maxwell's equations. Recall that the metic field and the induction are deduced
from the vector potential by its curl, that the magnetic flsxobtained by a contour integral of the
vector potential, and that the eddy currents are propatitmthe time-derivative of the vector
potential.

2.2 Maxwell’'s equations

In cylindrical coordinateqr,8,2) with unit vectors(&,€&p,&,), we consider a vector function
A(1,0,2) = A (1,0,2)8& + Ag(r,0,2) + A(r, 6,2)&,. Recall that the vector Laplacian operator in
cylindrical coordinates applied to a vector functiéis given by:

2 2 2
M:(aA, 10°A | 0°A [ 10A A 2@>ér

02 '12962 " ar2 "rar r2 296
(aZAg 10%Ag 0%Ag 10Ay Ag 2 aA,>
+ &

(2)

02 1282 " ez trar 12 1200
(02AZ 1927, 92%A, 10AZ_AZ> g

02 'r29602 " orz2 "r or 2

If Ais now a vector potential oriented along the ortho-radiedation and independent 6f as
it is the case in this paper, the only non zero componeAtisfAg which we denote by from now
on, for simplicity’s sake. The previous expression (2) treeds:

- (0°A 9°A 10A A
AA—(E*WﬁW‘Fz) 6 ®)
We also denote bfA the component ohA with respect tag, i.e.
9°A 9°A 10A A
a2 o 2o A 4
022+dr2+rdr r2 “)

Maxwell's equations of the MTB system may be decomposed &htopen subdomains,
Q,,...,Qg, shown in Figure 1, with conductivitg; and magnetic permeability;. In every open
subdomai;,i =1,...,8, we consider the corresponding vector potential, dertoteyl. It satisfies

8
AA(r,zt) = oiuiﬁa—?(r, zZt), vt €[0,T],V(r,2) € Qi, Ar,zt) = _ZAi(r, zt)lg (r,z)  (5)

wherelg, (-, -) is the indicator function of the subdomdi

We now detail the boundary conditions for all these subdamarhey are of three kinds: zero
magnetic flux or zero vector potential on an edge, contimifitjre vector potential and its gradient
through an edge, or imposed tangential magnetic inductiche edges of the coil.

In the whole domaif, the initial condition is zero. The boundary conditionsdvelre stated
for all t:
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e ForoQ:
As(ro,zt) =0 Vz€]z, ]
=5 (rA(rz t))’rzrl =Bri(zt) Vz€lzz] ©
a_ZAl(ra Zat) S =0 vr E]roarl[
Ai(r,z1,t) = Ag(r,z1,t) VI €]ro, 1|
e ForoQy:
Az(ro,Z t)=0 VZE]Zl,Zz[
L5 (halrzy)| = A& (Asnzy)| | Vzelazl o
0—ZA2(r,z,t) T azAl( z, )Z " Vr €]ro,r1]
MAo(r,z,t) = 0 Vr €]ro,r]
e ForoQs:
A3(r1,zt) = Ay(ry,zt) Vz€|n,z]
Az(ra,z,t) = Ay(rp, zt) VZE]Zl,Zz[
2 (AT, Z,t))‘zzZl =Bra(r,t) Vrelry,ry] (8)
As(r,z,t) =0 vr e]rl,rz[
e ForoQyu:
Ay(rs,zt) =0 Vz€]|z,2]
1o (rA4(r,z,t))}r:r2 = A4 (Asrzt)| | Vzelaz| o
2 Au(r,z,t) = 2 As(r,zt) . Vr €]ra,r3]
—Z] —£]
Aq(r,z,t) =0 Vr €]rp,r3]
e ForoQs:
As(rs,zt) =0 Vz€]z,7]
A8 (As(rzn)| | =Brs(zt) Vzelzo.z| o
2 As(r,z t)‘ =0 Vr €]ra,r3]
(r 7, ) - (r Zlvt) vr E]rz,rg[
e ForoQg:
A6(r0,z t)=0 Vz€lz 2 4]
A asrzt)| = & (merzn)| | veelzaza an
As(r,z-1,t) = Ag(r, 20,1) v €lra, rgf
A6(r7L27t) - 0 \V/r e]r27 r3[
e ForoQy:
A7(ri,zt) = Ae(r1,zt) Vzelz 2,z 4]
A7(ra,zt) = Ag(rz, zt) Vzelz 2,z 4]
$(Ar(rz0)|  =Bra(t) Vrelrurel (12)
As(r,z_,t) =0 Vr €]rq,ro]
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e ForoQg:
Ae(ra,Zt) =0 Vz€|z 2,2 4]
=2 (rAg(r,zt)) T =2 (rA7(r,2,t)) . Vz€|z 2,24 (13)
A8(r7L17t) - A5(r7203t) vr e]r07r1[
Ag(r,z_»,t) =0 Vr €]ro,r1]

whereBr 1(zt), Br3(zt), Brs(zt) andBr7(zt) are the tangential component of the magnetic
induction created on the edges of the coil. It may be shownguii], that there exist functions
Z, i=1,5andR;, j=3,7, depending on the air gag such that:

wherel (t) is the current intensity in the coil.

2.3 Solution in the particular case of three adjacent domaia
2.3.1 The system of PDEs for three adjacent domains

For the sake of simplicity, we only present the solution inead &f three adjacent domains (say
domains;, Q, andQ3). The computation of the general solution follows the saimesl

We introduce the time Laplace transformpftr,zt),i € 1,2,3, notedA; (r,zs) = o*‘”A; (r,zt)esdt.
Itis well known that the Laplace transform %‘f} is equal tosA; (1, z,s).

For convenience, using the linearity of the diffusion eturatthe vector potential is searched in
the form:

3 3
A(r,zt) & _ZA; (r,zt)lg (r,2) Zi (A (r,z,t) + Aiz(r,z,t)) 10, (1, 2) (14)
where:
~ 1
Air(rzs) = Z}Gi k(S)@rik(r,S)Urik(2) (15)
k_
2(r,z,s) %BI (8)2i k(r)Uyik(z9) (16)

A+ (r,z,9) andA 4(r, z,5) being solution respectively of
AAL,K (ra Z, S) = UbUbSAi,K (ra Z, S) (17)

in Q;,i =1,2,3,K =r,2z with boundary conditions:
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e for 091
Air(ro,29) =0 V z€]z0, 21
5 (Au(rz9)| | =Bra(zs) Vzelnal
2Aui (29| =0 Wr €]ro, 11
Al,,r(r, 7,5 =0 Vr €]ro,r1]
A1 4(r0,29 =0 Vz€|zo, 71|
A (Auarzs)| | =0 vzelna
0_ZA1’Z(r7Z7S)‘z:zo =0 Vr €]ro,r1]
A1 4(r,21,9) = Ag(r,21,9) vr €]ro,raf
e for dQo
A (ro,z s =0 Vz€ln,z|
.
& 9 (rAzs(r,2,9)) ‘r:rl = 4 (rAs(r,z9)) . Vz€lzn,z|
a—zAz‘r(r,z,s) =0 Vr €]ro,r1]
~ : =71
Azt (r,22,8) =0 Vr €]ro,r1]
Az Z(ro,z s) =0 Vz€ln,z|
r 5 (rAzZ(r z,9)) ‘r:rl =0 Vz€ln,z|
A, Z(r,z,s)’ = 2A(r,2,9) Vr €]ro,ra|
G =27 z =2
Ao (1,20,5) =0 Vr €]ro,r1]
o for 0Qs3
As;(r1,2,8) = Ay(r1,2s) Vz€lz,z
A\gf(rz,z S) = A4(r2,z s) Vz€]n,z|
2 (Ass( rzs)‘ v €]ry,ro]
Asr(r,z2,9) =0 Vr €]y, ro|
As4(r1,2,5) =0 Vz€lz,z|
As (12,25 =0 Vz€lz,z|
2 (Aga(rzs )’ =Br3(zs) Vrery, ]
~ Z
Az(r,22,5) =0 vr€lry, o]

whereA4(r2, z,s) is a given function.

Note that the Componen&,r(r, z,9) (respA-’z(r, z,5)) represent the radial (resp. axial) diffusion

in the material.

(18)

(19)

(20)
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2.3.2 Solution
Combining (15), (16) and (17), it is readily seen tipat  andy; « k are given by:

52 ir [Z ir 2y,
A (19) + 220 () — (abkos+ 3 ) Buok(n9) LTl |
=% :AriKVkeN,|:1,2,3
i rk(r,S) Yirk(2) v
029i, d¢; 2y,
;r’z’k(r) 4 1%k gy Siak(r) 902k (2,9) — OppSYh k(2 9)

— =AikVkeN,i=123
i 2k(r) Wi 2k(2,9) 2k

This leads to the two systems of equations:

{ %‘Tgi‘(r, S) +%ﬁ<§}nk(r, s)— (abubs+ Arik+ 712) i rk(r,s) =0 1)
azﬂz"’k (2) +Arikirk(2) =0
and

{ T2 (1) + 1282 (r) 4 (Agia— 3 ) dran(r) =0 2

> w —7(2,9) — (Azik+ OoHpS)Pi zk(2S) =0

Let us introduce the notatlons.

=i(Fmy Ty )= i (") Ka (rmf)+ (( >'*><.(rnn) 1(rmn))

{ Yi(Fim, A ) = 2R (rm\g()rm\;')nf)h(rmf)) (23)

with rm,rn € R, n,A € C andJ;, (resp.l;) the Bessel function (resp. modified Bessel function) of
the first kind and of the i-th order= 0, 1, and withY;, (resp.K;) the Bessel function (resp. modified
Bessel function) of the second kind and of the i-th order0, 1, [9].
_Inorder to find the unknown functions corresponding to thedaticoil contribution, we project
Br,i(zs), i = 1,3 on the functional basiécos((z— z0)1/Ar1x) |k € N} andBr j(r,s), j = 3,7 on
the functional basi§Yi(r1,r,Az3x) |k € N}:
Bri(29) = Zi(21e)i(s) = 1(5) 3,5 Zik(Ie(s)) cos((z— 20) y/Arik)
Brj(r,s) = Rj(rale)f( ) [(9) 3o R k(le(9) Ya(ra, 1, Az )
where,vk e N, fori=15andj =
Zik(le) = 72 Zo] 1Zi(&,le) cos((& —20)y/Arik) €
B (1o) = L PRIPIYA(rLp Aaji0p (25)
T 2 p(VarpAz10) dp
Then, the solutions i;, i = 1,2,3 are givenyn € N, by:

(24)

Av(rz9) =1( >zk 21 k1e(9) pre o) o5 cos( (2 20)v/Ar 1)
Alz(r,z,s) b1 k(S)Y1(ro, 1, Az1k) cosh((Z— Zo)Az1k(S))

Ay (r,zs) = Zk—oaz k(9)Z1(ro, 1, Ar2k(8)) sin((z2 — 2)v/Ar2)

Roa,2,9) = 52 borlValrou, i) Sin ((Zz— 2Ag14(9) (20)
Ag(rzs) =y o(Vs,k( )1 (rAr2k(S)) + TG k(K1 (FAr2k(9))) sin((z2 — 2)v/Ar2k)
Rar(r.28) = (9315 fe@k(re(s»vl(rl,r,Az,s,k>A )
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where, fork =r,z,i = 1...8 andvk € N, A, j K and/\ ; k(s) are defined in Appendix A.1 and where
b1k, @2k(S), b2k(S), Yak(S), B3k(S), are to be determined by the following system, deduced ftam t
continuity of the vector potential and its gradient on thenomon edges of the adjacent domains:

byn(s) COSH(z1 — 20)Az1.n(S)) — b2n($) SINN(22 — 21)Az.1.n(9)) — 51 Zp B2k(S)M.2kn(S) =0
b.n(S) cOSH(22 — 21)Az1.n(S)) +bn(S) Sinh((zL — 20)Az1n(8)) = [(S)gr2n(9)

(—=1)"Ar2n(S)azn(s) — Azzn(S) (Vanlo(riAz3n(s)) — &nKo(riAzan(s))) = r( S)932n(S)
n(911(r1Az1.n(9)) + a3n()K1(r1Az1n(S)) —@2n(S)=1(ro, 1, Ar2n(9) — St P2k(S)h23kn(S) =0
(s)) + dan(

Yan(
Yan(S)1(r2Az1n(s S)K1(r2Az1n(S)) = 93,4.n(S)

O3.4n(S) = 22321 A4(f275 s)sin ((ZZ_E)\/)\r,Z,k> dé

and with g1 2n(S), 932n(S), h12kn(S), h23kn(S) defined in Appendix A.1 for the 8 sub domains
problem. Suitably grouping theses equations, the systadsre

,n

N
(27)
with:

(%17n —%Zm) <b17n(3)) _ (Zﬁfo az,k(S)hl,z,k,n(S)> (28)
Bzn  PBan ) \ban(s) g1,2:n(S)
with
PBin=cosh((z1 —0)N\z1n(S)), Fon=SiNN(Z2—2)N\z1n(9))
Bzn=siNN(z1 — 20)A\z1n(S)), Pan=cosh((zz—21)Nz1n(9))
and
<rl7n _r27n) <V37n(s)> _ < (_1)n+1/\r,2,n(s)az,n(s) + g3,2,n(5) > (29)
Fan  Tan / \In(9) a2n(8)=1(ro, 11, Ar2n(8)) + Yo P2k (9)h2,3kn(S)
with

r1,n = /\2,3,n(3)|0(r1/\z,3,n(5))7 I_Z,n = /\2,3,n(5)K0(r1/\z,3,n(5))
M3n=11(r1Az1n(9)), Man=Ki(riAz1n(9))

It can be shown that the matricegs of (28) andl” of (29) are invertible. Therefore, we can obtain
b1 n, b2, 5.0 anddz n in function of theay n’s. Substituting them into the last equation of (27) for all
ne N, we getalinear equation for tiag, J’s for everyn € N. Therefore, the complete solution of (17)
with boundary conditions (18)-(20) is given by (14). Moreowne can show that the coefficients
ay j, previously obtained are linear with respecf tassuming thatz 4 is linear with respect t0.
Therefore, we can defirg, ,, b} , b, ¥, andd; , such that/n € N:

azn(s) = (8)a3n(9),  bun(s) =1(04(S).  ban(s) = T(8)byn(9),

. . (30)

Van(s) =1(S)¥3n(s), and &n(s) =1(5)85,(s)

The solution of System (5)-(13) is obtained in an analogoag (8ee Appendix A.1). It may

alsp be proven that the analogue of the coefficiapisby n, bon, 5.0 anddz, are linear with respect
tol.
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3 Differential flathess

3.1 Notion of “practical” flatness for infinite-dimensional systems

Basics on finite dimensional differential flathess may bentbin [5] (see also [6] in the context of
magnetic bearing systems). Roughly speaking, a systemmitiputsu andn statesx is differen-
tially flat if there exists am-dimensional outpuf (called flat output), with functionally independent
components, function of, u, and possibly dinite number of time derivatives af, for whichx and

u can be expressed as functiongy@ind afinite number of its time derivatives.

In our problem, the model with stafeand inputJ is infinite -dimensional, and the above defi-
nition does not directly apply. Here, we do not want to makigarous theory of flatness for infinite
dimensional systems and we restrict toaahhocdefinition, well suited to obtain a solution of the
motion planning problem. This is why this property is calf@ectical.

3.1.1 Inthe time domain

Let us denote b2 = J& ; Qi. The set of infinitely differentiable functions frof@, T] to R (resp.
from Q x [0,T]) to R) is denoted byC* (][0, T]) (resp.C*(Q x [0,T])). We consider the systekn
defined by (5)-(13).

Definition 1. We say thak is “practically” differentially flat (or, in short, flat) if here exist linear
operators

o o/ C*([0,T]) — C*(Q x[0,T])
o % : C*(0,T]) — C=([0, T))
o % : C*(Qx[0,T])xC([0,T]) — C([0,T])
such that if Ac C*(Q x [0, T]) is solution ofz corresponding to U= C*([0, T]), then
y=%AU)=2A+ YU <— dy=A Zy=U.

)
)

3.1.2 Inthe frequency domain

Assuming that the Laplace transforms of the sigald andy are well defined for alt € v —1R,
in the frequency domain and denoting ByU,y the Laplace transforms o4, U,y respectively,
Definition 2 read&

Definition 2. We say thak is “practically” differentially flat (or, in short, flat) if here exist linear
operators

o /. C°(v/~1R) — C”(Qx+/—1R)
o 7 : C*(y/—IR) — C*(vV—1R)
e % C°(Qx+/—1R)xC*(v/—1R) — C*(v/—1R)
such that ifA € C*(Q x v/—1R) is solution of corresponding taJ € C*(v/—1R), then
Y= (AU)=ZpA+Zy0 < F9=A, %y=0.
Remark 1. In Definition 2, the operators?, % and% are not necessarily equal to/, % and%
respectively, of Definition 1, since the latter operatorsirdapend on time.

1Definition 2 can be made rigorous by using Mikusinski's @gienal calculus [7]
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3.2 Aflat output

The line integral of the tangential component of the magriatiuction on one edge of the MTB is,
according to Maxwell’s equations, the line integral of tteemal derivative of the vector potential
on this edge. Choosing the edgedf opposed to the call, the time function denotedybgiven by
the line integral of the tangential magnetic induction as #dge is our candidate flat output:

R — A 1 /a9, -
J)=ZA) == | = (A(r&s)| d& (31)
roJz Or r=rop
whereA; is defined in (14).

Let us show that the knowledge of this output allows to obtaévalue of the vector potential
in the whole domaif2 and the value of the corresponding coil voltage.

Formula (31), with (26) and (27), combined with Wronskiaaritities of Bessel functions [9],
reads:

i(s) = 2i(s) [ 2 (—1)*Z1x(le(s)) 112 by (9)sinh((z1 — 20)Az1.k(9))
NS = fo o /\r,l,k(s) (7—2T + le') Eo(ro, rl,/\r‘ylvk(s)) m&e AZ-,l-,k(S)
(32)
with by (s) = E}g (see (30)) andh; i (s) given by (27).
We set
s9=2(s (~1)Za(le(9)) L 1 by(9sinh(21 — 20)11(9)
B o \\& /\r717k(s) (7_27 + ka) =o(ro, rla/\nLk(S)) % /\z7l7k(s)
Remark that(s) does not depend ditfs). Then:
fa L Y(S)
I(s) = & (33)

wherever this fraction is well defined.
Thus, we can defing’ (resp.<) using (1) (resp. (36) and (37)¥ reads:

w 1 2 2 Zilror,Avax() s i
U(S) = = R+2N7rys L Zik+ S b (s)Ya(ro,re, A
() G(S)< ' <Zl_ZOk;/\r,l,k(s):O(rmrla/\r717k(s)) L k; 1(8)Y1{f0, 11, Az14)
(34)

The expression of7 is obtained by combining (36) given in Section A.2, (37) aBa)( Its
expression, very long and complicated, is omitted due tdatble of space.
Therefore the vector potential @ and the corresponding coil voltage are everywhere given as
functions ofy according to the expression of and (34). It is also possible to deduce the value of
the magnetic flux in function of as shown in Appendix A.2.

4 Motion planning
In this section, the knowledge of the flat output is used tarbnin open loop, the flux in the air

gap between two given steady stat@s(tp) and®*(ty1), in a prescribed duratiom(— tp), the rotor
being kept fixed. The superscript™stands for reference trajectories.

10
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When the flux is brought from one value to another in a finiteetieddy currents appear in the
magnetic material of the MTB, thus resulting in an increafsine flux settling time and dissipated
energy.

There is an infinite number of ways to bring the flux from oneueatio another, with more or
less eddy currents. In order to reduce the eddy currentiviifiB, we can impose the variation of
the flux using the flatness property of the system.

We follow the following steps:

1. We calculate the initial and final values of the flat outp{) from the valuesb*(ty) and
®*(t1). Fori =0,1:

G(0)¢* (1)

0 S =1(ro,F1,\r,1k(0 o
27y (ﬁ Zﬁr:osz('e(t))/\rrlvk(%)go(lro,rf;\(nl),)wo)) + 3500 (0) Ya(ro, rla)\z717k))

yi =y(t)=

2. We define the trajectory(t) between these two values as a Gevrey function (see [8] p.91):
0 fort <0

t-tg

= —U
t) = -]01 Oe—(r(l—r)) dr 35
Ygeu(t) g or0<t<t (35)
1 fort >ty

whereuv > 1 is a real parameter tat may be tuned: the steepness of ttiofuincreases with

U. Thusyreads :
y(t) = (Y1—Y0) Yoedt) + Yo

3. The corresponding voltagi&(t) is thus obtained using the inverse Laplace transforr ¢$)
given in (34): o
Ut)=2"*(7Z(s)yt)
where.Z~1 denotes the inverse Laplace transform, defined by
c+IT

L YF(s)} = 1 im e'F (s)ds

T 2M Tt o T
with 1 =+/—1 andc € R, provided that the integral converges.

4. We compute the corresponding induced fib(t), created by the eddy currents, using the
inverse Laplace transform of (s) defined in Appendix A.2 and given by (41):

De(t) =2 (F(9) (1)

Assuming that this flux is zero at= 0, we may try to maintain its time derivative as small as
possible in order to keefe(t) small,vt € [to,t1].

Then, the computed voltagé(t) to be applied to the coil is deduced.

5 Conclusion

A model of the MTB without slots and where eddy currents akenianto account has been derived
in this paper. It has been shown that this infinite dimengisystem is flat in a “practical” sense.
The flat output chosen is the integral of the tangential camepbof the magnetic induction on the
edge ofQ; atr =rq. Finally, this flat output is used to drive the magnetic fluxppen loop, between
two steady states in prescribed duration. The minimizaticthe influence of the eddy currents in
the effective magnetic flux and the feedback regulation leralwill be studied in future works.

11



Motion Planning for an Active Thrust Bearing System Turpault, Lévine, Da Silva

References

[1] J.T. Conway. Trigonometric integrals for the magnetitdiof the coil of rectangular cross sectidBEE
Transactions on Magneticd2(5):1538-1548, May 2006.

[2] L. D. Landau and E. M. Lifshitz.Electrodynamics of Continuous Medidheorical Physics. Pergamon
Press, 1960.

[3] B. Laroche. Extension de la notion de platitude a des systemes d&gait des équations aux dérivees
partielles linéaires PhD thesisEcole Nationale Supérieure des Mines de Paris, 2000.

[4] B. Laroche, Ph. Martin, and P. Rouchon. Motion planniagthe heat equatiorinternational Journal of
Robust and Nonlinear Control0(8):629—-643, 2000.

[5] J. Lévine.Analysis and Control of Nonlinear Systems - A Flatness-dbaggroach Springer, 2009.

[6] J. Lévine, J. Lottin, and J.C. Ponsart. A nonlinear aggh to the control of magnetic bearingEEE
Transactions on Control Systems Techno)e{$):481-608, 1996.

[7] J. Mikusihski.Operational calculusVolume 8 of International Series of Monographs in Pure apgdligd
Mathematics. Pergamon press, 5 edition, 1959.

[8] J. Rudolph. Flatness-based Control of Distributed Parameter Syst&maker Verlag GmbH, Germany,
2003.

[9] G.N. WatsonA Treatise on the Theory of Bessel FunctioBambridge University Press, second edition,
1944,

[10] L. Zhu, C. R. Knospe, and E. Maslen. Analytic model foramlaminated cylindrical magnetic actuator
including eddy currentdEEE transactions on magnetic$1(4):1248-1258, 2005.

A Appendix

A.1 Expression of the vector potential inQ as functions ofy(s)

The vector potential in the whole domdh reads:

Pur(r,2.9) = [(9) 355 Zak((el9) mry oy €08((2— 20) /Ar 1)

e\lz(ﬂz s) = Ek b1k(s)Y1(ro,1, Az1k) cOsh((z— 20)Az1k(S))

A2r(r Z, S) Zk oa2k( )E ( IF/\rzk( ))Sm((ZZ_ )\/ )\r727k)

Azz(r z,8) = Ek b2 k(S)Y1(ro,1,Az2 k)smh((zz— )/\2727k(s))

Aa(1,2,8) = 5,5 (1K) (T 3K(9)) + B3k(9K1 (FAr3K(9)) ) sin((22 — 2)/Arak)

Bl 29) = 9 3ol Y1 s S )

Ag (r,2,5) = zk_oa4k( 8)=1(r3, 1, Arak(s))sin((z2 —2)Arak)

Auy(r,2,9) = 355 ba( Ya(ra., Azax)Sinh((z2 — 2)Azak(S))

Por(1,2.9) = 1(8) 5 Zok(1e(9)) rzyrarmatiansarey €0S((2— 20)y/Ars)

As(1,2,5) = Sicobsk(9)Ya(ra, 1 Azs i) COSN((2—20)Azsi(s))

Aer(1,2,5) = Zk oaek( 8)=1(rs, 1, Arek(S))Sin((z—z-2(3))/Ar6k)

Ae(r,2,8) = 3,56 k() Y1(r3,1, Az6 k) SINh((2— 2-2(5))Az6k(9))

Az (r,z,8) = 315 (vr( )|1(F/\r7k(3)) +07k(9)K1 (rAr7x(9)) ) sin((z—z-2(5)) v/Ar7k)

Aea,2.9) = 19 5% Rkl 1o Va(ra,r Ay ) o L2 et

Agi(1,2,5) = 3, a8 k() =1(ro.1, Argk( ))sm((z -2.2(9))v/Arek)

Agy(r,2,9) = 3, g k() Y1(ro, 1, Az 8k) SINN((Z— 2-2(5))Azgk(9)) (36)
with, vk € N:

12
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Vaik= VAsk= 28 ok = Ak = Vrak= 25, keN

\/’\r,G,k = \//\r,7,k = \/)\r,&k = ﬁg ke N*

o A1k /Az2k andy/A g are the positive roots ofg(ro,r1,A) =0, keN

e /Azzkand,/A, 7 are the positive roots of(r1,r,A) =0, keN

o /Azak \/Azskandy/A e are the positive roots ofg(rs,r2,A) =0, keN

o Nik(S) =\/Akik+ OplpS, K=1,21=1,---,5
vk N K,I,k K,l, ) 4 ] ? )
* e Nk.jk(S) = \/Ak,jk+ OdlaS, K =1,2, | =6,7,8

hq is the width of the disc.The unknown functioag(s), m= 2,4,6,8, bn(s), n=1,2,4,5,6,8,
Yok(S) anddy(s), p= 3,7, are to be determined by the following system, deduced frentonti-
nuity of the vector potential and its gradient on the commages of the adjacent domains:

ban(s) cosh((z1 — 20)Az1,n(S)) — bzn(S) SiNN((Z2 — 21) Az 2n( ))—Eﬁfoaz,k(s)hl,zkn( s) =
Nz1n(8) (b2,n(s) cosh((z2 — z1)Az1,n(S)) + brn(S)SINN((Z1 — 20)Az1,n(S))) = 1(5)g12n(S)
a2n(S)Ar,2,n( )—0(r07r1a/\r2n(5) Ar3n(S) (Yanlo(riAran(s)) — dzn Ko(rl/\ran( s))) = ()gz.2n(9)
¥Van(8)11(riAAr3n(s)) + dan( )Klgrl/\r?,n( S)) — azn(8)=1(ro, 1, Ar.2n(

K

s) — bok(S)hz3kn(s) =0
V37n( 9)11(r2Ar3n(8)) + 33n(S)Ke(r2Aran(s)) — @4n(8)=1(rs, r2,Aran(s)) — Zk ob4k(5)h34kn( s)=0
aan/\ran(s))= O(rOarlv/\l‘4n( S)) — Ar3n(S) (Vanlo(r2Aran(S)) — dzn KO(rZ/\r3n( s)) = |( S)03.4n(S

Nz4n(S) (bancosh((z2 — z1)Azan(S)) +bsnsinh((z1 — 20)Az5n(S))) = ( S)05.4,n(S)
bs n COSH((21 — 20)Az5n(S)) — PanSiNh((z2 — z1)Az4n () — 3 p@uk(S)Naskn(S) =0
ben(S) sinh(hgAze.n(S)) —bsn=1(S)gs6n(S)

a6,n(5)\r,6n(8)=0(r3,r2,Ar6n(S)) — Aren(S) (Y¥rn(S)lo (r2Arsn(S)) — 07.n(S)Ko (r2Ar6n(S))) = 1(S)97.6n
(V7 nll(rz/\r7n( ))+57,nK1(r2/\r,7,n(s))) dgn= 1([‘ r27/\r,6 n(s)) k ob6 k( )h6777k,n(s) =0
(¥7nl1(r1iAAr7.n(8)) + 87nK1(r1/Ar7,n(9))) — 8 n=1(ro, 11, Argn(S)) — 3o bsk(S)78kn(S) =0
agn(S)A\r.gn(S)=o(ro,r1,Aren(S) — Ar7,n(S) (V7,n(S)lo (ra/Ar7,n )) ( S)Ko (1A 7,n(S))) = 1(s)g7,8n
bg n(s) cosh(hgAzgn(S)) — bak(s) = 1()grgn(S) @a7)
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Where:

Vin= 3% Jip[Y1(ro, P, Azin))* dp
v2n_2k oj p‘Yl r3ap )\25n) |2dp
)

)21 (e(9)\/Ar
g1.2n(S) = Vln Y 0/\r1k 15((r0(r1)/\,1k1k 1p=1(ro, 0, A\r1k(8)) Y1(ro, P, Az1n)dp

932n(9) = =z Xk o Ra(le (5)),\“,&k )/\r,z,k(s)) Jz2sinh((z2 — £)Ar2k(9)) sin((z2 — &) y/Ar2n) dE

(s)cosh((z—z

_ VAz3kYo(r1.12,A23k) Zy .
U3.4n(S) = ﬁ Yo (k~( )),\Mk f:osr( o Zl>/ir4k( 9 /2 22sin((z2 — §)Arak(s)) sin((z2— &)/Aran) d&
O5.4,n(S) = Vz” Zk 0 Ask(® 5)0<25 (2 /(\,);k< 2 p=1(r3,0,Ar5k(8)) Ya(r3, P, Az50)dp
r Yo(ry,r )\ )Az
976n(S) = 2 315 Ryl (Sk)~ 6A° 1058@:‘/\ 61k )jLzsmh((E Z2)\gx(9) sin((§ —z-2)\/Argn) dE
fo

Os.6,n(S) = Vz” Zk 0 Acgk(® 15) (253 T(z /(\,);k< rfzsp 1(r3,0,\r5k(8)) Y1(r3, p,Az5n)dp
gr.8n(s) = mlhd Yoo 7k( (S)),\ e cosr(hd/\ @) = J7 2sinh((& —z_2)Argk(8)) Sin((& —z-2)/Argn) d€

“1)KZ) (fe
gL&n(S) = Vln ZK_O /\rlk >0(rtkr(1 /(\,>1>k(s)) rrol p—l(rovvar,l,k(S))Yl(r()vpa)‘Z,l,n)dp

_mnk

hi2kn(s) = 525 i p=1(ro. P, Ar2k(8)) Y1 (ro. . Az1n)dp
h23kn(S) = 2= zlYl(fo,fl,/\zlk) S2sinh((z2— &)Az1k(9)) Sin((z2 — &) \/Ar2n) dE
h3akn(s) = Yl(rg,rz,/\z4k) Zzlzsinh((zz—f)/\MK( ) sin((z2— &)y/Arzn) d€
haskn(S) = ﬂ 72 P=1(r3,0, Arax(8) Y1 (13,0, Az50)dp
he7kn(S) = _Yl(r37r2a)\26 k) J7 2sinh((& -z 2)Az6k(S)) Sin((& —2Z-2)\/Ar7n) dE
h7gkn(S) = 7; Y1(ro, 11, Azg k) J7 2sinh((& -z 2)Az8k(s)) Sin((§ —z-2)\/Ar7n) d€

(38)
2/ (s) is thus obtained by combining (36),(37) and (33). Its exgimes very long and compli-
cated, is omitted due to the lack of space.

A.2 Expression of the effective flux and the induced flux in theViITB

We call effective flux®, the magnetic flux created in the MTB, taking the eddy cugreffects into
account. This flux can be seen as the difference of two fluxesflax created in the same MTB
without eddy currentspr, and the induced flux created by eddy currets,

[B(t)] = [Pr(t) — Pe(t)]

We define the effective flux in the air gap, in frequency domamthe flux at the boundary
betweerQ; and the air gap:

d(s) = / BLdS,
= y{ A,dl; from Stokes’ theorem

227T(T1A1(I’1, 2, S) - rOAl(rOa 2, S))

- 2 . . ro,f1,/\
:2nrll(s)< Y Zi(le(9)) =110, "1 Arak(S +zb/ (9Y1 ro,rl,Azlk)>

a-0 %5 Arak(s)= o(fo,rl,/\rlk
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Combining this expression with (33), we get:

=1(ro,r1,\r1k(S) , 21w 1§(S)
+ b1 (s)Y1(ro,r1,A ~
<21—2020 ol /\rlk(S) o(fo,fl,/\rlk ; 1Mo, 12, Az 1) G(s)
(39)

Eddy currents vanishing at steady state, the flux creatdokiivifT B without eddy currents may
be obtained ify(t) is at steady state at each timeJsing (39),®r reads:

2 5 Z1(ro,r1,Ar1k(0 y(s)
®r(s) = 2mr Z L + Y bl (0)Yi(ro,ra, —
() 1<Zl_ZOkZO il ))/\rlk(o)—o(rmrla/\rlk ; 1(fo,f1,A21) G(0)
(40)
Finally, we get®. by combining (39) and (40) with:
|Pe(t)| = |Pr (L) — P(1)]
In frequency domain, we define the functigh: v/—1 R — C such thatbe(s) = Ze(9)y(S):
— 4mry < (~ - =1(ro,r1,Ar1k(0))
Fe(s) = ————=— Z1k(le(s = =
9= (21— 20)G(s) (k; tdlel ))/\r,l,k(o)zo(fo,fl,/\r,l,k(o))
> i = ’ 7/\ (S))
~Zyk(le(s 20,11, Arai ) 41
{lel ))/\r,l,k(s):O(rOarla/\nLk(S)) (1)

400
+ 5 (b1x(0)Ya(ro.r1,Az1k) _bll,k(S)Yl(rOarla)\z,l,k))>
=0
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