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Abstract
Active magnetic bearings (AMBs) have been used in many high-speed rotating machinery ap-

plications. Because of the nonlinear characteristics of magnetic bearings and complex dynamics
of the flexible rotors, the problems of stabilization and disturbance rejection need to be exten-
sively addressed for their smooth operation over a wide operating speed range. Conventional
controller such as the proportional-integral-derivative (PID) design has played a major role in
most AMB related applications. Although it is easy to implement, there exist limitations and
drawbacks. The µ-synthesis approach can fulfill the requirement of robust performance, but it
relies on the plant and uncertainty models, which are sometimes difficult to acquire for practical
systems. This paper explores the use of the characteristic model based all-coefficient adaptive
control (ACAC) method to stabilize a flexible rotor AMB system. This new control method does
not require an actual model of the system. Both simulation and experimental results have shown
its strong potential to perform well in spite of its simplicity.

1 Introduction
Active magnetic bearings are becoming popular in practical applications and have been an active
research subject for years. Compared with conventional mechanical bearings, AMBs operate quite
differently in many prospectives. On one hand, AMBs rely on electromagnetic force to support the
object, and there is no physical contact, creating an operation environment nearly free of friction.
On the other hand, AMBs require feedback control to generate appropriate supporting force, which
demands additional electronic devices. Although AMBs possess several advantages such as higher
efficiency and reliability, lower maintenance and repairing cost, and clean working environment,
they also reveal more complexities since they require auxiliary equipments to provide the desired
control performance. Because of the nonlinearity and instability of AMBs, controller design is the
most essential task in an AMB system.

Currently PID controllers are the most widely used control mechanism for magnetic bearing
related industrial applications [1]. Because of their simplicity, they are easy to implement and with
intuitive tuning process, they can achieve reasonable control performance. However, for complex
dynamic systems, it is difficult for those controllers to deliver robust and near optimal performance.
In recent years, robust control techniques such as µ-synthesis have also been applied to magnetic
bearing applications [2, 3]. Compared with PID control, the µ-synthesis approach is able to better
handle the uncertainties in complex system and achieve reliable performance. However, µ-synthesis
needs the plant and uncertainty models to generate the most suitable solution, and in reality, it takes a
lot of efforts to model a complex system. Besides, if the properties of the plant change significantly,
the original µ controller might not work properly anymore.

Characteristic model based all-coefficient adaptive control (ACAC) method has been widely
used in process control and aerospace industry, and numerous application examples have demon-
strated its effectiveness [4]. This method is able to provide robust control performance on multi-
dimensional complex dynamical systems, while maintaining a simple structure and not requiring the
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Figure 1: Test rig overview.

actual plant model [5–7]. This paper explores using the characteristic model based ACAC method
to stabilize a flexible rotor AMB test rig.

This paper is organized as follows. Section 2 describes the flexible rotor AMB test rig, the
principle of AMB control and an existing µ-synthesis controller. In Section 3, the concept of char-
acteristic modeling and the all-coefficient adaptive control mechanism are introduced. Section 4
presents the implementation and shows the simulation and experimental results. Conclusions are
drawn in Section 5.

2 A System Description

2.1 The Test Rig
The AMB test rig [8] was designed and built as a research platform in the Rotating Machinery and
Controls (ROMAC) Laboratory at University of Virginia. The original purpose of this test rig is to
emulate an industrial centrifugal gas compressor and study control of the rotordynamic instability.
The rotor is 1.23 m long and weighs around 44.9 kg. Four laminated steel journals are mounted on
the shaft for two radial support AMBs at the nondriven end (NDE) and driven end (DE), and two
radial disturbance AMBs at the middle and quarter span. Only the NDE and DE support AMBs
are utilized for control. There are also two auxiliary ball bearings mounted at the support AMB
locations to prevent damage to AMBs when the rotor drops. A 3.7 kW Colombo RS-90/2, electric
fan cooled, high speed motor with variable frequency drive (VFD) is used to make the rotor run up
to 18,000 rpm, and a 2.2 Nm motor torque is also available for this speed.

Four amplifiers are installed for each radial magnetic bearing and each amplifier features a 25
kHz switching frequency. The maximum continuous current rates at 10 A, which gives each AMB a
static load capacity of 1450 N. The rotor motion is monitored by a 10 channel Kaman eddy current
sensor system and the displacement of each control axis is measured by a 1H/15N static probe. The
digital control system is based on the Innovative Integration M6713 PCI board and a TI C6713B 32-
bit floating point digital signal processing (DSP) chip is used for the implementation of the digital
control algorithm with an updating frequency around 12 kHz. There are 16 channels of analog input
and output to be simultaneously sampled and interfaced with the actuators and sensors. A control
station computer with custom graphic user interface is also designed to provide the user with many
functionalities. The entire AMB test rig system is shown in Fig. 1.
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Figure 2: AMB control flow diagram.

2.2 AMB Control

Closed-loop feedback control is critical for the stabilization of an AMB system. The µ-synthesis
approach is applied to the AMB control design using Matlab function dksyn for D-K iteration with
4 iterations to find the reasonable µ value [9]. The final µ-synthesis design is a 48th order controller
with µ = 0.856 for the plant model of 48 states, which include models of the rotor dynamics, AMBs,
sensors, amplifiers and other components. In Simulink, it is implemented in a state space form for
the x and y axes of both DE and NDE [3]. This design is later implemented in a DSP computer and
the performance requirement and parametric uncertainties of the rotor-AMB system have been well
handled by the µ-synthesis control [9].

A typical control flow diagram consisting of the major components, including controller, AMB
coils, shaft and sensors, is shown in Fig. 2. In this diagram, r is the reference signal, e is the
error signal, u is the controller output, i is the control current, F is the AMB force, yr is the shaft
displacement, ys is the position sensor reading and W is the external disturbance force.

3 Characteristic Model Based All-coefficient Adaptive Control

3.1 Characteristic Modeling

This modeling process focuses on the characteristics of the plant and the control performance re-
quirement instead of precise system dynamics. It compresses the corresponding information of the
high order plant into several characteristic parameters. The characteristic model remains a simple
structure but it closely reflects the feature of the original system. A linear time-invariant plant can
be described as

G(s) =
bmsm +bm−1sm−1 + · · ·+b1s+b0

sn +an−1sn−1 + · · ·+a1s+a0
. (1)

It has been established in [4] that this linear time invariant plant (1) can be represented by a
time-varying difference equation of a lower order. The exact order of this difference equation is
determined by the control objective. For our approach, we recall the following results.

Consider a linear time-invariant plant as given by (1). If the control objective is position keeping
or tracking, then, for a small enough sampling period T , the characteristic model is a second-order
time-varying difference equation,

y(k) = f1(k)y(k−1)+ f2(k)y(k−2)+g0(k)u(k−1)+g1(k)u(k−2), (2)
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where u(k) and y(k) are respectively the control input and the system output at the kth sampling
point.

The characteristic model (2) possesses the following properties:

• Coefficients f1(k), f2(k), g0(k) and g1(k) are slowly time varying.

• The ranges of these parameters can be decided a priori.

• In response to a same input, the output of the original model (1) and that of the characteristic
model (2) are identical at the sampling points.

• Assume that the static gain of system (1)

D = G(0) =
b0

a0
= 1.

Then the sum of all the coefficients approaches 1, i.e.,

f1(∞)+ f2(∞)+g0(∞)+g1(∞) = 1.

3.2 All-coefficient Adaptive Control
The all-coefficient adaptive control has been widely used in many engineering applications with
stable and robust control performance [10]. Consider a linear time-invariant plant

y(n) = an−1y(n−1)+ · · ·+a0y+bn−1u(n−1)+ · · ·+b0u,

whose discretized equation is written as

y(k) = α1y(k−1)+α2y(k−2)+ · · ·+αny(k−n)+β0u(k)+ · · ·+βn−1u(k−n+1). (3)

The coefficients of (3) satisfy the following conditions [4]:

• If the static gain D equals to unity, then the sum of all the coefficients equals to one,

n

∑
i=1

αi +
n−1

∑
i=0

βi = 1.

• If the static gain D ̸= 0 and is bounded, then the sum of all the coefficients approaches one as
T → 0, i.e.,

lim
T→0

(
n

∑
i=1

αi +
n−1

∑
i=0

βi

)
= 1.

The ranges of αi and βi can be determined in advance based on the ranges of ai and bi, and the
value of sampling time T , which is usually chosen as

T ∈
[Tmin

15
,

Tmin

3

]
,

where Tmin is the minimum equivalent time constant of the system and it can be measured in practical
applications.
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Once the ranges of the parameters are specified, parameter estimates should not only rely on the
algorithm of the parameter estimation, but also satisfy the requirements that they are constrained by
closed sets and the sum of all coefficients should equal to one. The initial values of those coefficients
are chosen from the specified closed sets, so the estimated parameters can more closely approach
their actual values, which will improve the performance of the adaptive control during the transient
process.

The difference equation (3) can be written in the following compact form to facilitate parameter
estimation,

y(k) = ϕ T (k)θ +β0u(k),

where ϕ(k) and θ are defined as

ϕ(k) = [y(k−1) y(k−2) · · · y(k−n) u(k−1) u(k−2) · · · u(k−n+1)]T ,

θ = [α1 α2 · · · αn β1 β2 · · · βn−1]
T .

Let the feedback control u(k) be given as

u(k) =−ϕ T (k)L(k),

where L(k) = [L1(k),L2(k), · · · ,L2n−1(k)] is a feedback gain that makes the closed-loop system
stable.

We can adopt a least-squares algorithm to update θ̂(k) as follows [11],

P(k)=P(k−1)−P(k−1)ϕ(k)ϕ T (k)P(k−1)
λ +ϕ T (k)P(k−1)ϕ(k)

,

θ̂(k)= θ̂(k−1)+β0(k)L(k)−β0(k−1)L(k−1)

+P(k)ϕ(k)[y(k)−ϕ T (k)(θ̂(k−1)−β0(k−1)L(k−1))]. (4)

In order to update β̂0, based on the fact that the sum of all the coefficients equals to 1, it follows
from (4) that [11],

β̂0(k) = β̂0(k−1)−θs+β̂0(k−1)−1
Ls+1

−MP(k)ϕ(k)
y(k)−ϕ(k)T [θ̂(k−1)−β̂0(k−1)L(k)]

Ls+1
,

where θs, Ls and M are given as

θs =
2n−1

∑
i=1

θi(k−1),

Ls =
2n−1

∑
j=1

L j(k),

M = [1 1 · · ·1︸ ︷︷ ︸
2n−1

0 0 · · ·0︸ ︷︷ ︸
n

].

The all-coefficient adaptive control u(k) generally consists of a maintaining/tracking control
um(k), a golden section feedback control u f (k), a logic differential control ud(k) and a logic integral
control ui(k). It can be written as

u(k) = um(k)+u f (k)+ud(k)+ui(k),
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where um(k), u f (k), ud(k) and ui(k) are respectively specified as
1. Maintaining/tracking control

um(k) =
yr(k)−ϕ T (k)θ̂(k)

β̂0(k)
,

where yr(k) is the desired output;
2. Golden section feedback control

u f (k) =
l1α̂1(k)ỹ(k)+ l2α̂2(k)ỹ(k−1)

β̂0(k)
,

where l1 = 0.382, l2 = 0.618, α̂1(k) and α̂2(k) are the estimates of α1 and α2, and ỹ(k) = yr(k)−
y(k);

3. Logical differential control

ud(k) = k1
ỹ(k)− ỹ(k−1)

T
,

k1 = kd

√
N

∑
i=1

[| ỹ(k−N + i)− ỹ(k−N + i−1) |] ,

where kd is a positive constant;
4. Logical integral control

ui(k) = ui(k−1)+ k2ỹ(k),

k2 =

{
ki1, ỹ(k)[ỹ(k)− ỹ(k−1)]−ψ ≤ 0,
ki2, ỹ(k)[ỹ(k)− ỹ(k−1)]−ψ > 0,

where ki2, ki1 and ψ are all positive constants with ki2 > ki1 and ψ being a small number.

3.3 Characteristic Model Based All-coefficient Adaptive Control
The characteristic model (2) can be written as follows to facilitate parameter estimation,

y(k) = ϕ T (k−1)θ(k),

where ϕ(k−1) and θ(k) are defined as

ϕ(k−1) = [y(k−1) y(k−2) u(k−1) u(k−2)]T ,

θ(k) = [ f1(k) f2(k) g0(k) g1(k)]T .

In order to specify the ranges of the parameters, we first analyze a second order time-invariant
difference equation as

y(k) = α1y(k−1)+α2y(k−2)+β0u(k−1)+β1u(k−2).

The ratio between the sampling time T and the minimum equivalent time constant Tmin satisfies
T

Tmin
=η∈[0,ηmax] and the ratio between T and the maximum equivalent time constant Tmax satisfies

T
Tmax

∈[0,η ].
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According to [11], when ηmax ≤ 1
3 , the parameters satisfy the following conditions for unstable

plants: 

2cos(ηmax
2 )≤α1 ≤ 2e

ηmax
2 ,

−eηmax<α2≤−1,

2e
ηmax

2 cos(ηmax
2 )− eηmax≤α1 +α2<−1,

b0T 2

2 <β0<
b0T 2

2 (1+ηmax
3 +η2

max
12 ),

b0T 2

2 (1−η2
max
24 )<β1<

b0T 2

2 (1+2ηmax
3 +7η2

max
24 ).

Based on the conditions above, it can be observed that α1 → 2, α2 → −1, β0 → 0, β1→0, as
T → 0. Let 

T
Tmin

∈ [ 1
10 ,

1
4 ],

T
Tmax

∈ [0, 1
10 ].

Then the ranges for the corresponding parameters can be calculated with ηmax =
1
4 [11],

α1 ∈ [1.9844,2.2663],

α2 ∈ [−1.2840,−1],

α1 +α2 ∈ [0.9646,1].

Because β0 and β1 are close to 0, we can choose some really small positive numbers for g0(k)
and g1(k). For the stability of the system, f1(k) and f2(k) are to be chosen from

N = {( f1(k), f2(k)) | 1.9844 < f1(k)< 2.2663,−1.2840 < f2(k)<−1}.

Let θ̂(k) be the estimate of the parameter vector θ(k). Then the estimation error ε(k) is

ε(k) = y(k)−ϕ T (k−1)θ̂(k) = (θ(k)− θ̂(k))T ϕ(k−1).

We can adopt the gradient adaptive law and a direct mapping approach to acquire θ̂(k),

θ̂u(k+1) = θ̂(k)+
γϕ(k)ε(k)

δ +ϕ T (k)ϕ(k)
,

θ̂(k+1) = π[θ̂u(k+1)],

where δ ≥ 0, 0 < γ < 2, and π[x] is the projection of x into N [12].
The characteristic model based all-coefficient adaptive control scheme uc(k) for the AMB con-

trol is written as

uc(k) = uc1(k)+uc2(k)+uc3(k)+uc4(k),

where uc1(k), uc2(k), uc3(k) and uc4(k) are respectively specified as
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1. Maintaining/tracking control

uc1(k) =
yr(k)− f̂1(k)y(k)− f̂2(k)y(k−1)−ĝ1(k)uc1(k−1)

ĝ0(k)+λ1
,

where yr(k) is the desired output, λ1 is a positive constant, and ĝ0(k), f̂1(k), f̂2(k) and ĝ1(k) are the
estimates of g0(k), f1(k), f2(k) and g1(k), respectively;

2. Golden section adaptive control

uc2(k) =
lc1 f̂1(k)ỹ(k)+ lc2 f̂2(k)ỹ(k−1)+ ĝ1(k)uc2(k−1)

ĝ0(k)+λ1
,

where ỹ(k) = yr(k)− y(k), lc1 = 0.382 and lc2 = 0.618;
3. Differential control

uc3(k) = d1
ỹ(k)− ỹ(k−1)

T
,

where d1 is a positive constant;
4. Integral control

uc4(k) = d2

k

∑
i=1

ỹ(i) = uc4(k−1)+d2ỹ(k),

where d2 is a positive constant.

4 Simulation and Experimental Results
In order to verify the proposed ACAC design, both simulation and experimental studies have been
conducted. The simulation is based on the Simulink model derived for the entire rotor AMB system,
which includes all essential components of the test rig. The µ-synthesis controller was initially used
to stabilize the test rig and its performance serves as a baseline for comparison with our characteristic
model based all-coefficient adaptive controller. To verify the characteristic model based ACAC
approach, the original µ-synthesis controller in Simulink is replaced by the ACAC mechanism. For
the x and y axes at both driven and nondriven ends, ACAC with the same controller parameters are
utilized.

The simulation results are illustrated in Figs. 3 and 4. In the simulation, f1(0) = 2.102, f2(0) =
−1.104 and g0(0) = g1(0) = 0.001. Note that

f1(0)+ f2(0)+g0(0)+g1(0) = 1.

The controller parameters are chosen as λ1 = 0.16, d1 = 0.0257, d2 = 0.01, δ = 3.5 and γ = 1.5.
The test starts with rotating speed at 0 rpm and goes up to 14400 rpm. It can be noticed that for
different control channels, the control signals of ACAC are very similar due to the same coefficient
settings, while for the µ-synthesis, the control signals vary for different channels. In terms of the
vibrations at both driven and nondriven ends, it can be observed that the displacements of x and y
axes under control of ACAC are much smaller than those using µ-synthesis for most of the speed
range. The parameter estimations are shown in Fig. 5, where with the change of the rotating speed,
the controller parameters also get updated accordingly to guarantee stable control performance.

We next implemented the ACAC algorithm on a DSP computer for the actual AMB test rig
to verify the simulation results. The same initial conditions and controller parameters as used in
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Figure 3: µ-synthesis simulation results (control inputs, shaft displacements and orbit size).

simulation are applied in the experiment. For practical implementation purpose, a first order low-
pass filter combined with a phase bump filter is designed to roll off the high frequency gains [13].
A notch filter is also added to attenuate the noise effect caused by the second bending mode [14],
which is around 530 Hz. The original ACAC algorithms get converted to C code and replace the
existing µ-synthesis algorithm. The recorded highest rotating speed is around 14400 rpm at which
the rotor remains stable. ACAC approach preserves reliable performance and is comparable to the
µ-synthesis in certain measures, as shown in Figs. 6 and 7. It can be observed that for both ACAC
method and µ-synthesis, the control signals have several peaks when the rotor passes through the
rigid body modes and move towards the first bending mode. The control voltage of µ-synthesis is
smaller than the ACAC method and it also has a narrower bandwidth, which causes the operation to
be quieter. In terms of vibration attenuation, the ACAC method is more effective in both driven and
nondriven ends by generating smaller rotating circles within 1.8 mils.
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Figure 4: ACAC simulation results (control inputs, shaft displacements and orbit size).

5 Conclusions

This paper presents applying characteristic model based all-coefficient adaptive control on a flexi-
ble rotor AMB system. The nonlinearity, uncertainty and high order natures of flexible rotor AMB
systems cause challenges for control system design. Although µ-synthesis is able to sufficiently
meet these challenges in a robust manner, it requires the plant and uncertainty models and the actual
controller is quite complex, which might not be convenient for practical applications. The charac-
teristic modeling method significantly simplifies the modeling of a complex dynamical system by
analyzing its characteristics and considering the control requirement. Based on this method, we can
use a second order time-varying difference equation to handle a position tracking/keeping scenario.
The resulting characteristic model based all-coefficient adaptive control design adopts a modified
gradient adaptive law. Both the simulation studies and experimental results of the ACAC approach
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Figure 5: Estimation of parameters f1(k), f2(k), g0(k) and g1(k).

have shown the effectiveness of this design method and its strong potentials.
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Figure 6: µ-synthesis experimental results (control inputs, shaft displacements and orbit size).
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Figure 7: ACAC experimental results (control inputs, shaft displacements and orbit size).
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