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Abstract 

 

 This paper suggests a method to control an unbalance vibration of the magnetic bearing by 

multi-degree of freedom internal model controller which is called Model Bridge Control. This 

control method can compensate for each control problem, e.g. robust stability and uncertainty 

compensation, responses, disturbance rejection. By focusing on a disturbance compensator, this 

paper put forward a control system which rejects agitation due to unbalance.  In this paper, a 

controller design method using a disturbance compensation characteristic of model bridge 

control is shown. The controller gets possible to control an unbalance forced vibration with the 

specific frequency by using a disturbance model. The effectiveness of the proposed method has 

been clarified by simulation. 

 

 

1  Introduction 
 

One of the features of active magnetic bearings is the ability to control unbalances, and a large number of studies for 

unbalance compensation have been proposed [1]. Since “generalized notch filters [2]” can be used also within the 

rigid body critical speeds, it is a very effective method. However, it requires measuring the closed-loop sensitivity 

function after designing the stabilized controller particularly. 

On the other hand, a lot of methods of the control to solve various control specifications at the same time have been 

suggested e.g.  H  control [3][4] and LMI [5]. However, since it is difficult to correspond individually to a control 

specification, a technique is required to design a good controller. To solve this problem, Model Bridge Control 

(MBC) which is based on internal model control [6] is proposed [7][8]. MBC is a modification of the generalized 

stabilizer and has the control structure that adjustable models bridge over the gaps between the uncertainty and the 

high robust stability, and between the external signals and the desired outputs individually. We aim to construct a 

robust MIMO controller by MBC in the future. 

In this paper, a controller with easy realization for unbalances at the rigid body critical speeds is proposed. This 

control system is model bridge controller which has the structure that incorporated a stabilizing compensator, a 

disturbance compensator. However, the uncertainty compensator is not used in this paper. 

It is notable that the disturbance compensator enables control of any disturbances by incorporating its Laplace 

transform model. In this study, the sine wave disturbance model with the same frequency as the rigid body critical 

speed is included in it. 

The performance of the suggested control strategy is well tested via computer simulation. Assuming that the control 

object is a two degree of freedom active magnet bearing system, decentralized controllers are designed for each 

degree. The stabilizing compensator is designed so that the rigid body critical speed of this system becomes 25rps, 

and a sin wave model with 25Hz is incorporated in a disturbance compensator. When a rotating speed is raised from 

0rps, both displacement and control voltage are reduced at the time of critical speed (25rps) passage. The simulation 

results show that the proposed control method makes it possible to pass the rigid body critical speed safely, to 

control housing vibrations, and to avoid amplifier saturation.  

 

2  Modeling 
 

The configuration of a vertical type rotor system supported by magnetic bearings is shown in Figure 1. The 

nomenclature in this paper is shown in Table 1.   
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Figure 1:  Two degree of freedom model 
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Table 1: Nomenclature 

 

 

A state –space description of this system becomes the following. 

 

 dDuBXAX fffff   (1) 

 ff XCY   (2) 

Where 
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The proposed controller is designed using the following equation which ignores gyroscopic effects. 
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where 
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3  Controller design 
3.1  Basic concept (Mode Bridge Control) 
 
The controlled system is be controllable, observable, invertible and its transfer function is denoted by 

    )()()(1 sRsGssG mm
p

 with uncertainty. Consider the control system as shown in Figure 2, where 

)()()()( sRsGsMsG mm
M

  is the adjustable model of    )(1 sGs , and )()( sRsM  is the uncertainty 

compensator. It is assumed that  sG p and  sGM do not contain any zeros on the imaginary axis for internal 

stability of the resulting control system and the number of the unstable poles of  sGM  is equal to the number of 

the unstable poles of  sG p . The state space form of  sG p  is denoted by  

 

     BAsICsGM
1

  (4) 

 

where nnRA  , mnRB  , 
nmRC  ,  BA,  is controllable and  AC,  is observable. The nmRF   stabilizes 

BFA  and mnRK   stabilizes KCA . The  sRQ mm
a

  and  sRQ mm
b

  are stable parameters. The control 

system as shown Figure 2 is said to be the model bridge control (MBC), because the gaps between the uncertainty 

and robust stability, between the reference inputs and desired responses and between the disturbances and adequate 

rejection are bridged by adjustable models individually [7][8]. Since the model bridge control is equivalent to the 

generalized stabilizer [9] for      sQsQsQ ba  and decoupling of the state feedback and the observer holds, the 

model bridge control systems is stable. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A state-space representation of  the presented controller 
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For    sGsG pM  , the outputs y  to reference r  and to the disturbance d  in Figure 2 are given by 

 

        srsPsGsy M  (5) 

             sdsGsNsPsGIsy MM  (6) 

 

respectively,  where 

 

            sQBBFAsIFIsQBAsIFIsP aa
111    (7) 

 

 
           

        KKCAsICIsQKKCAsIFsQ

KAsICIsQKAsIFsQsN

ba

ba

111

1111








 (8) 

 

are adjustable models that bridge the gaps between the reference input and the desired output responses, and 

between the disturbance and the its rejection individually. It follows from Equation  (5) and (7) that 

 

        srsBQBFAsICsy a
1

  (9) 

 

The transient responses can be adjusted by F  in  sP . The zero steady state error is accomplished by choosing 

 sQ a  such that  

 

     IsBQBFAIsC iai 
1

 (10) 

 

is satisfied for poles  ,,1isi  of the reference input  sr . The output to the disturbance is given by 

  

              sBdKCAsICsQsBQKBFAsICIsy ba
11 

  (11) 

 

from Equation (3) and (5). The transient responses can adjusted by K  in  sN  .The zero steady state error is 

obtained by setting  sQb to satisfy 

 

        0
1




ibiai sQsBQKBFAIsCI  (12) 

 

for poles  ,,1 isi  of  sd . 

In order to design model bridge control system for  sGM , it is assumed that (a)  sGM  can be decoupled by state 

feedback [10] and (b) the unstable zeros are row zeroes to yield 
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where  sGIi is inner with unstable row zeros and  sGo  does not contain any unstable zeros. 

 

3.2  Controller for unbalance control 
 
In this study, it is assumed that (i)the reference input   ssr /1 , (ii)    sGsG mp   (without uncertainty) and the 

uncertainty compensator   1sM , (iii)the decentralized controller is designed based on Equation (3). Therefore, 

Equation  (10) turns as follow 
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     gggM BAsICsG
1

  (14) 

 

This system does not contain any unstable zeros. The design procedures are as follow. 

Step1: Design of F  and  sQ a   The output to the reference input is given by Equation. (9) F  and  sQ a  are 

designed to satisfy     1iiM sPsG  for poles  ,,1isi  of  sr . The relative degree of Equation.(14) is defined 

as v . Let 
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for arbitrary 0 , where 
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where the coefficients are determined to satisfy 
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for poles  ,,1isi  of  sr . Then Equation (9) becomes 

 

  
 

     srsGsQ
s

sy Ir



1

1
 (22) 

 

The output can follow to the reference input with pre-assigned transient response and the zero steady state error. 

Step2: Design of K  and  sQb   The output to the disturbance is given by Equation (11). The transient response is 

adjusted by K . Compute the stabilizing solution 0 TYY of the Riccati equation   
 

     0 YCYCYIAIAY g
T

gg
T

g   (23) 

 

for 0 such that does not contain any eigenvalues at the imaginary axis. Let 

 

 
T

gYCK   (24) 

 

Then the roots of gg KCA 
 
lie in the left half-plane.  The transient response of Equation (11) can be adjusted by  . 

The  sQb  is designed to yield zero steady state error.  Let  
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and compute the coefficients kq  to satisfy Equation (12) for  ,,1isi  which are poles of  sr  and  sd  . 

 

3.3  Design example 
 

3v  is given by Equation (14). By 01.0 , Equation (18) and (19)  are as follows. 

 

   1100.3100.3100.1101.01 22436
1

2
2

3
3

3
  ssssasasas  (26) 

 

  861 1031.11021.11089.4   (27) 

 
From the assumption (i), 1  , furthermore, Equation (20) becomes  1rQ . Therefore, F  and  sQ a   are as 

follows. 

 

  203 1000.51005.41020.1 F  (28) 

   01004.2 sQa  (29) 

 

Compute the stabilizing solution of Equation (23) for 10 , and substitute the result for Y in Equation (24), this 

equation becomes 

 

  TK 1063 1026.41093.51083.3   (30) 

 

Because the resonance frequency of a system stabilized with Equation (28) and (29) is 25Hz, the disturbance d  is 

determined as follows. 

  

 
 22 252

252
)(










s
sd  (31) 

 

Substitute 1.0~  in Equation (25), compute the coefficients kq  to satisfy Equation (12) for 

)3(252,0   is  which are poles of  sr  and  sd  . As a result, Equation (25) becomes as follows 

 

  
 2

3221

11.0

1003.91071.31006.9






s

ss
sQb  (32) 

 
 

4  Simulation results 
 

The simulation results in the condition which raise a rotational speed in 5rps/sec from 0rps is evaluated. The results 

using the proposal controller is shown in Figure 3. The frequency which the disturbance compensator operates is 

passed at 5sec.  It has been shown from this result that the displacements and the input signals are controlled very 

small by a controller.  

For comparison, the result without the disturbance compensator is shown in Figure 4. Because of an imbalanced 

influence, the amplitude of displacement and input have been become large. From these results, the validity of the 

disturbance compensator has been confirmed. 
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(a) Displacement                                                                    (b) Control inputs 

 

Figure 3: Unbalance responses using Equation (32) 
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Figure 4: Unbalance responses without the disturbance compensator   ( 1bQ ) 

 

3  Conclusion 
 

In this paper, an active magnetic bearing controller for stabilization and unbalance disturbance rejection has been 

proposed. The controller is constructed as a multi-degree of freedom controller based on internal model control. The 

disturbance compensator for unbalance is designed to control a sine wave disturbance which is same frequency as a 

critical speed. The validity of the disturbance compensator has been confirmed by simulation results. 

It had been clear that the proposal technique can be applied to control a MIMO system, and to compensate several 

sine wave disturbances from which frequency differs [8]. The future object of this study will be to realize MIMO 

controller, and to control parallel and conical modes. 
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