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Abstract

In magnetically levitated systems at least one degree of freedom has to be actively
stabilized.1 This is usually achieved with a linear magnetic actuator. If not prevented
by e.g. lamination, eddy currents take place in the field conducting iron. These eddy
currents have a strong effect on the field distribution in the iron and further reduce the
force per current at higher frequencies. In this paper investigate the dynamic properties
of a non laminated actuator biased with a permanent magnet in the rotor is anlaysed.
It is shown that the voltage to force transfer function is practically unaffected by eddy
currents.

1 Introduction

Active magnetic bearings are an essential part in magnetically levitated systems. We dis-
tinguish two main groups according to the mechanism of force generation. In the first the
force is the result of the change in reluctance in the magnetic circuit and is therefore inde-
pendent of the direction of the current in the coil. In the second, a permanent magnet in
the magnetic circuit, which can be considered as constant current offset, results in a force
dependent on the direction of the coil current. This allows a control loop around zero cur-
rent, which is the main reason for choosing this type of active bearing.2 It is advantageous
to increase the performance by guiding the magnetic field in an iron core, as proposed by
Jungmayr et al. [1], where the coil has been placed in the air gap of the magnetic circuit
(called Lorentz force bearing). Beside the advantage of low inductivity, no negative stiffness
and high linearity, it suffers from a low force per magneto motive force ratio kΘ, due to the
large air gap. Here we go one step further and enclose the coil with iron, such that the
magnetic resistance is lowered, as shown in fig. 1. However, this has the drawback that the
iron generates negative stiffness in the direction which has to be stabilized.3 This negative
stiffness is over compensated by the increase of the force per ampere turns.

In this paper a rotation symmetric (z-axis) setup which is passively stabilized in two
planes perpendicular to the rotation axis (radial stable) with permanent magnet bearings
(PMB’s) is investigated. Thus the system is also stable against tilting. The remaining
unstable degree of freedom is the z-direction. This is the direction in which the active
bearing works. It has to, additionally to the negative stiffness of the active bearing, over
compensate the negative stiffness of the PMB’s. Furthermore, the stator is suspended by

∗Contact Author Information: martin.panholzer@jku.at,Johannes Kepler University of Linz, Altenberg-
erstrasse 69, 4040 Linz, Austria, phone: +43 732 2468 6428

1We neglect here electrodynamic bearings and diamagnetic systems, since they play a minor role in
technical applications.

2If there is an axial force at zero current in the planed equilibrium position, this force has to be com-
pensated by other elements in the system, e.g. passive magnetic bearings.

3The directions perpendicular to this axis can be stable or unstable, depending on the geometry.

1



Performance of an Active Axial Bearing Panholzer, Jungmayr, Marth, Passenbrunner and Amrhein

viscoelastic damping elements. These damping elements have a large influence on the control
loop as shown by Jungmayr [2].

For rotational symmetric actuators lamination of the core is hard to accomplish.4 As
result eddy currents have a large effect on the field distribution, shown in fig. 1. Further-
more the performance parameter, i.e. force per magneto motive force, is strongly frequency
dependent [3, 4, 5]. This can yield in bad dynamic behavior of the system.

It is shown that for these actuators the frequency dependence of kΘ( f ) is identical to the
frequency dependence of the flux linkage per ampere ψ( f )/i. This allows the determination
of the frequency dependence by a harmonic simulation without the permanent magnet,
which is much faster than a transient simulation. If no saturation in the iron takes place
it is possible to combine the results of the static and the harmonic simulation, as will be
shown.

2 Finite element analysis
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Figure 1: The investigated setup with the dynamic field distribution at 10Hz. The red
rectangle denotes the integration path for the force calculation.

The analysis has been done with the finite element solver FEMM[6]. The iron was
modeled linear with relative permeability µr = 4000 and conductivity σ = 106 S

m . A NdFeB
magnet with a remanence flux density of Br = 1.15T and a relative permeability µr = 1.065
is used. Furthermore the conductivity of the magnet was neglected. The static analysis
gives a value for the axial stiffness of sax = −16 N

mm and a force per ampere of ki = 54 N
A for

N = 1200 turns. The resistance of the coil is RCu = 76Ω.
The dynamic calculations are done with the time harmonic solver of FEMM. The advan-

tage of the time harmonic solver is that it is much faster than a transient solution, however
with the drawback that nonlinear material properties, such as a nonlinear B-H curve, can
not be easily included and permanent magnet magnetization is set to zero. The first draw-
back can be relaxed by choosing a design which does not saturate the material. This is also
important to reduce losses. The second is overcome by the following procedure:

4A simple method to reduce eddy currents to a large extent, is to cut the iron at a certain angle φ .
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After a static simulation with the permanent magnet, the field distribution on a path C
around the rotor (which is still in the air gap) is saved, Br(r,z),Bz(r,z). The path consists
only of horizontal and vertical lines, drawn in red in fig. 1, in order to simplify the calcula-
tion. The static force is calculated by integration of the Maxwell stress tensor on a surface
enclosing the rotor

Fi =
∫

C
∑

j
σi jdA j . (1)

Due to symmetry the φ - and r-component of the force vanishes. The φ integration in cylinder
coordinates gives only a factor 2π. Thus for the horizontal lines

F(1)
z1,2 = 2π

∫ r2

r1

1
2µ0

(B2
z (r,z1,2)−B2

r (r,z1,2))rdr (2)

and for the vertical lines

F(2)
z1,2 = 2πr1,2

∫ z2

z1

1
µ0

Bz(r1,2,z)∗Br(r1,2,z)dz (3)

is obtained. The force on the rotor is the sum of all contributions.
For the dynamic force we superimpose the dynamic- and the static- field distribution.

B = Bstat + Bdyn (4)

Note that this is only possible in the linear regime. Inserting the new field into the force
calculation (2) and (3) we obtain three types of contributions:

� The sum of all terms where both fields are static yields the static force

� The sum of all mixed terms, i.e. Bstat
r,z ∗Bdyn

r,z , yields the dynamic force with frequency f

� The sum of all terms where both fields are dynamic yields a force with frequency 2 f
and is only a result of reluctance force on the small back iron of the magnet. This
force is small and can be neglected in this case.

The dynamic field is complex valued due to the phase shift as result of eddy currents.
This is also the case for the force. The result for the frequency dependence of the flux
linkage and the force per magneto motive force is shown in fig. 2. It can be seen that
the frequency dependence of both quantities are approximately identical. Descriptively this
means that the field distribution outside of the iron looks similar for all frequencies, only
the overall magnitude and the phase is changing. This similarity holds only under certain
conditions: First no saturation effects take place and second the cross section of the flux
path is designed to yield an approximately constant magnetic flux density.

2.1 Effects on the dynamics

A characteristic quantity is the frequency dependent flux linkage per ampere per turn:

L1( f ) =
ψ( f )

Ni
. (5)

The frequency dependent part is isolated by dividing the static quantity

λ ( f ) =
L1( f )

L1(0)
. (6)
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Figure 2: The frequency dependence of the flux linkage L (blue) and the force per magneto
motive force kθ (red) is shown. The FEMM results are fitted by a rational function of the
order 5 in the nominator and denominator. (green)

The simulation results show that the frequency dependence of kΘ( f ) is identical and thus

kΘ( f ) = kΘ(0)λ ( f ) . (7)

This considerably simplifies the descripion of the system.

Next we look at the force as result of an applied voltage with frequency f , which is easily
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derived5

F( f ) = kΘ( f ) iN (8)

= kΘ( f )
U N

RCu + jωL( f )
(9)

= kΘ(0)λ ( f )
U N

RCu + jωL(0)λ ( f )
(10)

= kΘ(0)
U N

RCu
λ ( f ) + jωL(0)

(11)

From (11) it is seen that λ ( f ) has only an minimal influence on the Force response if the
cutoff frequency of RCu and L(0) is smaller than that of λ ( f ), which is the case for the
investigated system as shown in figure 3. This result should be a common effect for this
type of bearing since the resistance of the coil RCu could be much higher (factor five) and
also yield a similar result.

3 Control loop

In order to see the effect on the control system the closed loop transfer function is calculated.
The same topology as proposed by Jungmayr et al. [2] is chosen, see fig. 4.

To quantify the stability of the system the transfer functions

Ti,a(jω) =
i(jω)

ε̈(jω)
(12)

and

Tu,a(jω) =
u(jω)

ε̈(jω)
(13)

are used. Two quantities which limit the stabilizeable external acceleration ε̈, the supplied
voltage and the maximum current (thermal limited) are given. The result for the actual
design (with elastically mounted stator) is shown in fig. 5. These results are compared
to the calculation where eddy currents are neglected. It can be observed that the current
limited acceleration is higher for the static calculation. This is expected since eddy currents
reduce the dynamic stiffness [7].

The result for the voltage limited acceleration is surprising. From the similarity of the
voltage to force transfer function one would expect that also the stabilizeable acceleration
is approximately the same, for the case with and without eddy current. But this is not the
case, the eddy currents decrease the maximal acceleration in the frequency range of 8-25
Hz. The reason lies in the topology of the control loop. The final current controller produce
the error since the current is no longer proportional to the force due to eddy currents. To
overcome the problem either the current (force) has to be corrected or a different design of
the control loop has to be chosen.

4 Conclusion

It has been shown that the efficency of the bearing is lowered if eddy currents are not hinderd
in circulation. This means that the force per current is reduced with increasing frequency.

5The induced voltage due to axial rotor movement is neglected.
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Figure 3: The voltage to force transfer function is shown. The FEMM result (blue) is
compared with the fitted function (green), the error is ploted in cyan. The result with eddy
currents is compared to the result where eddy currents are neglected (red). The difference
is ploted in magenta.

On the other hand the voltage to force transfer function is in good approximation unaffected
by eddy currents under certain conditions. These conditions are, no saturation effects take
place and the cutoff frequency of the coil is lower than that of the eddy current. As result
the control system topology could be changed, either to compensate the eddy current effects
or choosing a topology which focuses on the voltage rather than the current.
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Figure 4: Control system as proposed by Jungmayr [2].
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Figure 5: The frequency dependence of the stabilizeable acceleration is shown. The current
(blue) and the voltage (green) limited acceleration with eddy currents is compared to the
current (cyan) and the voltage (magenta) limited acceleration with constant L and kθ i.e.
without eddy currents. For clarity the voltage limited acceleration curves are dashed. These
are compared to the 1g norm acceleration (red, IEC 60068-2-6:2007)
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