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Abstract

In order to calculate the dynamic behavior of magnetically levitated rotors (eigenfre-
quencies, rotor deflections. . . ), the knowledge of the radial and tilt stiffness of the active
and passive magnetic bearings is necessary. An optimization of the stability against exter-
nal disturbances and internal excitations (unbalance, magnetic tolerances) requires a large
number of calculations of these magnetic bearing parts. Therefore, a short calculation time
of the reluctance forces is crucial. As an original rotational symmetry is lost in case of
a radially deflected or tilted rotor, the tilt stiffness and the radial stiffness of magnetic
bearing parts are usually calculated with a 3D-FE software. These time-consuming cal-
culations prevent fast optimizations of the rotor dynamics. This paper shows a method
for the approximate calculation of the radial and tilt stiffness of rotationally symmetric
magnetostatic problems by using a 2D-FE program. The accuracy of the approximation
method will be verified by comparing the results with the exact analytical solution of a
pure permanent magnetic configuration.

1 Introduction

For magnetic bearing systems using passively stabilized degrees of freedom, the optimization
of the rotordynamics is essential in the design process. Therefore, all stiffness and damping
coefficients of the components (passive magnetic bearings, active magnetic bearings, motor,
viscoelastic and eddy current dampers) must be known.

Passive magnetic bearings [9] are an effective way to support some degrees of freedom of a
rotor. In [5] Lang showed how to analytically calculate the radial and tilt stiffness by numerically
solving elliptical integrals, if there is no iron in the magnetic circuit. Due to today’s performance
of standard computers, this method is well suited for optimizations and delivers results within
one second. Furthermore, the results are exact if the relative permeability of the magnet is
equal to one. If the magnetic flux is guided with magnetizable material (iron, ferritic stainless
steel) a finite element program has to be used for the computation of stiffness values. Due to
the lack of damping of permanent magnetic bearings, additional measures are required to gain
sufficient stability against disturbances and to successfully pass the eigenfrequencies during run
up. For applications with a limited temperature range, one possibility is to use a viscoelastically
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supported stator in order to damp the vibrations of the rotor [4, 6]. An alternative is to make
use of eddy currents to damp rotor vibrations [1].

Due to Earnshaws theorem, a radially passively supported rotor is unstable in axial direction.
If the axial degree of freedom is stabilized by an active magnetic bearing featuring reluctance
forces (e.g. as shown in figure 1), the passive stiffness values of this component have to be
calculated for the rotordynamic model. Furthermore, these stiffness values are a function of
the coil current. Additionally, the negative radial stiffness of permanent magnet synchronous
motors (PMSM) has to be included in the design.

This paper proposes a method for the estimation of the radial and tilt stiffness, which are
initially 3D problems, by using a 2D-FE program. This allows a much faster optimization of
magnetic bearing parts.

2 Calculation method

In this section, approximation formulas for the tilt stiffness kϕϕ and the radial stiffness kr of
axisymmetric components are derived. Figure 1 shows an exemplary embodiment of an active
magnetic bearing. The figures 1 and 2 are used to explain the approach, nevertheless the
derived formulas are generally applicable for configurations with vanishing magnetic flux in
circumferential direction  Br

Bϕ
Bz

 ≈

 Br
0
Bz

 . (1)

For example, the method can be applied to passive magnetic bearings using ferromagnetic
material for the guidance of the magnetic flux. In such cases the mentioned analytical solution
is not applicable.

Planar modeling of the problems fulfilling equation 1 can be one possibility to derive the
approximate radial stiffness using a 2D finite element analysis. The error made by neglecting
the rotational symmetry of the field will be small (see section 3.3). However, for an active
magnetic bearing as shown in figure 1, the volume of the back iron increases with the radial
distance r. Therefore, a planar model is not suited for the calculation of the actual saturation
in the back iron. In order to solve these kinds of problems, a 3D-FE software is typically used
where the rotor is moved (tilted) in several steps for the calculation of the radial force (the
tilting torque).

2.1 Approximation of the tilt stiffness

If the rotor is tilted by a small angle β (see figure 1), the axial deflection ∆z of a magnet cross
section at the circumferential angle ϕ is

∆z ≈ −rm · β · cos (ϕ) , (2)

where rm denotes the mean magnet radius. The tilting torque can be estimated by

Mβ ≈
ˆ 2π

0

rm · cos (ϕ)︸ ︷︷ ︸
lever arm

· Fz (∆z)

2π
· dϕ. (3)

By means of the axial stiffness kz the force of a purely axial displacement can be written as
Fz (∆z) ≈ −kz · ∆z.
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Figure 1: Exemplary illustration of an active magnetic bearing used for the derivation of the
tilt stiffness (left: cross section, right: magnet, top view)

The derivation of equation (3) with respect to β leads to an approximation formula for the
tilt stiffness

kϕϕ ≈ 1

2
r2m · kz. (4)

Therefore, the tilt stiffness can be calculated by using the axial stiffness if the tilting of the
magnet cross section is neglected.

2.2 Approximation of the radial stiffness

Although it is not as obvious, also the radial stiffness can be estimated by 2D-FE-calculations.
If the rotor is moved by r in direction of the x-axis, the radial deflection of a magnet cross
section at the circumferential angle ϕ is

∆r = r · cos (ϕ) , (5)

as marked in figure 2. Using an axisymmetric analysis in a 2D-FE program means that in
the case of ∆r = −r a smaller magnet is simulated (larger radial air gap), while ∆r = +r leads
to a larger magnet (smaller radial air gap). Therefore, the variation done in the finite element
software scales the size of the rotor from a little bit smaller to a little bit bigger dimensions.
As the integral of the mechanical stress over the circumference is always zero in rotationally
symmetric problems, the radial force will still be zero. However, if the magnetic coenergy
W co∗
mag is calculated for different rotor dimensions (different ∆r), an approximate calculation

of the radial stiffness can be done. The results gained from the finite element analysis can be
expressed as a Taylor series

W co∗
mag (∆r) = f0 + f1∆r + f2∆r2 + f3∆r3 + ... . (6)

By using this intermediate result, the magnetic coenergy W co
mag of a rotor moved by r in

direction of the x-axis can be approximated

W co
mag (r) ≈

2πˆ

0

W co∗
mag (r · cos (ϕ))

2π
dϕ. (7)
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The second derivative of the magnetic coenergy delivers the radial stiffness [8]

kr =
d2W co

mag (r)

dr2

∣∣∣∣∣
r=0

= f2. (8)

Therefore, the term proportional to the ∆r2 in the Taylor series expansion of W co∗
mag is equal

to the radial stiffness kr.

Figure 2: Exemplary illustration of an active magnetic bearing used for the derivation of the
radial stiffness. In the rotationally symmetric 2D finite element analysis the magnet is varied
from smaller (∆r < 0) to bigger dimensions (∆r > 0).

3 Proof of concept by means of permanent magnetic bear-
ings

3.1 Geometry of permanent magnetic bearings

The axial force Fz, the axial stiffness kz, the radial stiffness kr, the tilt stiffness kϕϕ and the
couple stiffness krϕ of permanent magnetic bearings can be exactly calculated if the relative
permeability of the magnet is equal to one and if there is no other magnetically conductive
material affecting the field of the magnets [5]. Therefore, this magnetostatic problem can be
used to estimate the error of finite element discretization in the software FEMM [3] and the
error of the approximation methods described in the sections 2.1 and 2.2.

Figure 3 specifies the geometry of two attractive permanent magnetic radial bearings used
for the verification. While for parameter set I the diameter ratio dri/dro is near to one, the
parameter set II describes a configuration with significant radial extent ( dridro

� 1).

3.2 Verification of the finite element analysis accuracy using the axial
force

Two different boundary conditions are used in the finite element calculations:

1. Closed region: Vector potential A = 0 on the boundary.

2. “Open boundary”: Using the Kelvin transformation. See [2] for a review of different finite
element boundary techniques.
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Figure 3: Two attractive permanent magnetic ring bearing geometries used for the verification

Analytical result Method Steps Error FE calculation
Geo. I Geo. I Geo. II

Fz -40.714 N
Maxwell force 1 0.02% -1.45%
Maxwell force 11 0.01% -1.44%

Coenergy 11 -0.32% -1.57%

kz -16 645 N/m
Maxwell force 11 1.64% 1.91%

Coenergy 11 3.42% -1.21%

kr 8323 N/m
Planar, Maxwell force 11 0.72% 2.17%
Coenergy, equation 8 11 0.72% -1.25%

kϕϕ -2.177 Nm/rad equation 4 - 2.53% -60.8%

Table 1: Relative error of the finite element calculation/approximation for geometry I and II.
Parameters: open boundary with 40mm diameter, mesh element size 0.05mm.

For the geometry I, figure 4(a) reveals the relative error of the axial force Fz using a closed
region in the 2D finite element analysis, while figure 4(b) shows the results of the open boundary
calculations. The finite element results are calculated in FEMM. From figure 4 it is evident,
that a small mesh size is necessary for a good accuracy. The closed region calculations with
sufficiently large boundary diameter (for this problem ≥ 50mm) are equally well suited as the
open boundary computations. In case of the open boundary, the amount of the relative error
stays below 1 percent for the finest mesh size.

3.3 Verification of the approximation methods

Using the knowledge gained from figure 4, the calculation of all stiffness values (table 1) is done
with an open boundary of 40mm diameter and a mesh size of 0.05mm. The last two rows, kr
and kϕϕ, are derived as described in sections 2.2 and 2.1. The radial stiffness kr was additionally
calculated by a planar setup, all other problem definitions were set to axisymmetric.

The table states the number of finite element calculations (column “Steps”) used to calculate
the force/stiffness. The method “Maxwell force” denotes that the forces were calculated directly
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Figure 4: Relative error in the axial force of geometry I for a closed region (a) and for an open
boundary (b).

by using the Maxwell stress tensor. The stiffness values were gained by the differential quotient.
In both cases, the value at the nominal air gap was calculated by using a least square fit. The
method “Coenergy” means that the force/stiffness was calculated by using the derivative of the
magnetic coenergy with respect to the axial or radial degree of freedom. Also the magnetic
coenergy was fitted by a Taylor series. As an example, the figure 6 illustrates the fitted Taylor
series of W co∗

mag used for the calculation of the radial stiffness kr.

3.3.1 Radial stiffness

As can be seen from table 1, the radial stiffness kr was calculated by a planar setup and by
the method described in section 2.2 using equations 6 - 8. The table 1 reveals that the results
from the planar setup are sufficiently precise for most technical problems. The influence of the
curvature is quite low, even for the case dri/dro � 1 (geometry II). This outcome is confirmed
by the investigations done in [7].
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Figure 5: Relative error in the radial stiffness gained from the approximation method using the
magnetic coenergy (open boundary calculations, geometry I).

However, the planar modeling is not possible for problems including magnetically conductive
elements as shown in figure 2. For this kind of problems, the radial stiffness kr has to be
calculated by the approximation method described in section 2.2. This method was applied
to the two permanent magnetic bearing geometries. The relative low error of kr in table 1
(method “Coenergy, equation 8”) indicates, that this approximation method delivers satisfying
results. The calculation accuracy of the radial stiffness kr is at the same level as the calculation
accuracy of the axial stiffness kz, where no methodical error is made.

However, special attention must be paid to the mesh element size. Figure 5 shows that the
relative error for kr can reach up to 40 percent for a rough mesh, but stays below 3 percent
for the finest investigated mesh. The calculated values of the magnetic coenergy W co∗

mag as well
as the corresponding Taylor series, gained by using a least square fit, are shown in figure 6.
The legend states the calculated radial stiffness kr and its relative error for 48mm, 72mm and
96mm boundary diameter. As depicted in figure 6(a) the relative error of kr is quite low for
the fine mesh, while figure 6(b) reveals that the curvature of the magnetic coenergy W co∗

mag (∆r)
fluctuates in case of the rough mesh. Therefore, also the relative error of kr gets high, almost
40 percent as mentioned before.

3.3.2 Tilt stiffness

In case of geometry I (dri/dro ≈ 1), the tilt stiffness kϕϕ can be calculated sufficiently exact by
the approximation formula 4, see table 1. For geometries with larger radial extent (dri/dro � 1),
as geometry II, this simple approximation leads to huge errors. However, for problems without
nonlinear materials (as shown in figure 3), better results are possible by dividing the magnet
into several rings. Due to the linearity, the individual results of the tilt stiffness kϕϕ can be
superposed.
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Figure 6: Magnetic coenergy W co∗
mag (∆r) for a fine (a) and for a rough mesh (b). Results for

geometry I and an open boundary with 48mm, 72mm and 96mm boundary diameter.

4 Conclusions

This paper considered fast methods for the calculation of radial and tilt stiffness of rotationally
symmetric magnetic bearing parts. Concerning the radial stiffness, a planar problem definition
can usually only be used for problems without magnetically conducting material. Therefore,
the proposed solution method is necessary for axisymmetric configurations with ferromagnetic
material used for the guidance of the magnetic flux. Since the stiffness values of pure permanent
magnetic ring bearings can be calculated exactly by analytical means, the accuracy of the
approximation method was verified using this magnetic bearing type. It could be proven that
the proposed approach delivered radial stiffness values which are sufficiently precise for most
technical problems. A major influence was shown for the mesh size, while the difference between
open and closed boundary results was negligible. It was shown that the tilt stiffness can be
approximated by the axial stiffness within certain limits.
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