
Analysis of the stability and the consumption of an
electrodynamic bearing for different operation conditions

Virginie Kluyskens∗

Universite Catholique de Louvain
Center for Research in Mechatronics (CEREM)

Bruno Dehez
Universite Catholique de Louvain

Center for Research in Mechatronics (CEREM)

Abstract

In centering electrodynamic bearings, the guiding forces result from the interaction between eddy currents
generated by a magnetic flux variation in conductors and the magnetic field. Predicting the dynamical behavior
of this kind of bearings is not easy given the interactions between the electromagnetic nature of the forces and
the rotational machinery aspects. In this paper, an electromechanical model, able to explain, predict, analyze
and simulate the dynamical behavior of bearings submitted to eddy current forces, is applied on a homopolar
null-flux electrodynamic bearing. The identification of the model’s parameters is done based on quasi-static
FEM simulation results. Thanks to the insight the electromechanical model gives on the physics involved in the
bearing, the dynamical stability and the stiffness of the bearing are analyzed as a function of the bearing spin
speed. For various operation conditions like a constant external load or a static unbalance, the behavior of the
electrodynamic bearing is simulated and examined using the electromechanical model. For all these operation
conditions, the influence of the external damping, necessary to stabilize the system is analyzed. The amount of
necessary damping to introduce is discussed and also its impact on the overall bearing consumption.

1 Introduction
Magnetic bearings can be classified in different categories, as explained in [1], for instance as being active or
passive. Active magnetic bearings use control systems to command the electromagnetic forces. Most common
active magnetic bearings utilize an electromagnet in which the current intensity is controlled. In opposition to
those active magnetic bearings, passive magnetic bearings do not use control systems. This implies that their char-
acteristics can not be modulated, and the stiffness they generate is usually lower than in active magnetic bearings.
However, they are usually simpler to use, cheaper, have a lower power consumption, and are intrinsically more
reliable. However, passive magnetic bearings based only on permanent magnet interactions or reluctance forces
can not be stable, according to the Earnshaw theorem [2]. They are then combined with other kind of bearings for
the remaining degrees of freedom, in order to achieve stability. For instance, they may be combined with other
kinds of passive magnetic bearings, which are not submitted to the Earnshaw theorem, like diamagnetic bearings,
superconducting bearings, permanent magnet bearings stabilized by a gyroscopic torque, or electrodynamic bear-
ings. In electrodynamic bearings, eddy current forces are intentionnaly generated to create the necessary centering
forces. Electrodynamic bearings have the advantages to be passive and cheap. Moreover, null flux electrodynamic
bearings do not generate forces, and thus no losses, unless needed, when the rotor is out-centered for instance. Ex-
amples of particular electrodynamic bearings can be found in [3] and [4]. However, electrodynamic bearings are
not easy to design, and the stiffness they produce depends on the spin speed of the rotor. Modeling the forces due
to the eddy currents adequately in dynamic conditions is important, in order to be able to simulate the dynamical
behavior of the bearing and to predict its performances. But this study is not easy because two aspects have to be
taken into account: the electromagnetic nature of the forces, and the rotor dynamic aspects, and the interactions
between these two aspects.
Modeling the dynamical behavior of a magnetic bearing, including the mechanic and electric dynamics of the
bearing, with finite elements is very heavy, and is not possible to realize reasonably nowadays. Furthermore, finite
elements model do not offer any insight on the physics involved nor on the parameters influencing the bearing
behavior. Analytical models have already been developed for particular electrodynamic bearings [4],[5]. In each
case, the particular model of the proposed magnetic bearing structure is then used to determine the necessary
damping and to predict the dynamical behavior of the bearing. These models were developed by solving the
Maxwell’s equations, and when the topology of the bearing is changed, the whole process needs to be done again.
Furthermore, in both models restrictive hypothesis are made in order to be able to solve the Maxwell’s equations,
or even in order to be able to study the rotor dynamic stability. Besides, such a model does not allow a comprehen-
sive understanding of all the physical principles involved and interactions, nor an easy analyze of the parameters
influence, nor to be used to draw general conclusions on magnetic bearings development. This shows the need
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for a general comprehensive electromechanical model able to predict the dynamical behavior of such bearings.
In [6] and in [7], a general parameterized electromechanical model is described. The model is based on a direct
analogy between the resistive-inductive dynamics of eddy currents and the spring-damper in series dynamics. The
model focuses on the dynamical behavior of purely electrodynamic magnetic radial and thrust bearings [6], for
homopolar and heteropolar bearings [7]. Stability is examined for a Jeffcott rotor on these kind of bearings. It is
shown, based on a root loci study, that the rotor is wholeheartedly unstable when used alone: external non rotating
damping is necessary to stabilize the system. Solutions are proposed in [8].
The model used in the present paper is presented in [9], [10] and [11]. For this model, a macroscopic point of
view is chosen as to the electromagnetic phenomena involved in the system. This allows us to generalize the
model to all kind of radial magnetic bearing subject to eddy currents. These bearings are modeled by mechanical
components, like springs, for reluctant forces, and dampers, for eddy current forces [9] and [10]. The choice
of the way to introduce these mechanical components in the electromechanical model is the result of a rigorous
approach based on the electrical and the mechanical power present in the system, [11]. With this parameterized
model, there is no need to develop an often complex analytical solution for the electric and the magnetic fields.
The resistive and the inductive behavior of the eddy currents is also taken into account, and an analysis is made of
the skin effect on this behavior at high rotating spin speed [12].
The parameters of the electromechanical system can be identified by forces measurements at different spin speed
either through finite element simulations or through experiments, as explained in [11].
The developed electromechanical system shows the existence of an unstable spin speed range, or in other words
the existence of two limit spin speeds between which the system behaves unstable in the radial plane, as shown
in [10]. The electromechanical system also allows to predict the value of the stiffness achievable by the induced
current forces, so that it can be verified that a specific magnetic suspension corresponds to desired specifications.
In this paper, the electromechanical model is applied on a homopolar null-flux electrodynamic bearing [4]. The
identification of the model’s parameters is done based on quasi-static FEM simulation results. Thanks to the insight
the electromechanical model gives on the physics involved in the bearing, the dynamical stability and the stiffness
of the bearing are analyzed as a function of the bearing spin speed. Afterwards, for various operation conditions
like a constant external load, a static unbalance and different rotor weights, the behavior of the electrodynamic
bearing is simulated and examined using the electromechanical model. For all these operation conditions, the in-
fluence of the external damping, necessary to stabilize the system is analyzed. The way to introduce this external
damping, the amount of necessary damping is discussed and also its impact on the overall bearing consumption.

2 Electromechanical Model
The electromechanical model we will use throughout this paper is presented in [9], [10], [13] and [11] and is briefly
reminded in this section. Its principle is to model the electromagnetic forces acting within a magnetic bearing by
mechanical components like springs and dampers. Indeed, on the one hand, the reluctance forces and the forces
between permanent magnets can be modeled by a stiffness k, when they are linearized by proportional to the
relative displacement force. On the other hand, the Lorentz forces due to the interaction between induced currents,
due to relative speed, and magnetic fields, can be modeled by introducing damping into the equations. Depending
on following which kind of motion generates these eddy currents, they are modeled by rotating damping cr or by
non-rotating damping cnr.
However, Lorentz forces resulting from the rotor spin motion can not be modeled by a simple constant rotating
damping coefficient. Actually, when an electromotive force is induced on a conducting piece, the generated
currents are subjected to inductive and resistive effects. Since the amplitude and the direction of the Lorentz
forces depend on these induced currents, these forces are also subjected to these resistive and inductive effects.
These effects will be felt on the orientation of the force and on the norm of the force.
The model is based on the following considerations:

• the spinning speed ω is constant;

• there is no unbalance;

• relative displacements remain small, which means that the amplitude of the magnetic flux seen by the
conductor

∣∣Ψ̄0
∣∣ can be assumed to be proportional to the amplitude of the center shift |z̄I | through:∣∣Ψ̄0

∣∣= cm |z̄I |

;
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Figure 1: schematic view of the rotor motion inside the stator

• the electromagnetic variables vary in a way that may be approximated by a sinusoidal behavior;

• there are only eddy currents resulting from the rotor spinning motion;

• the resistive and inductive effects taking place in the conductor can be represented by a global resistance Rr
and inductance Lr respectively.

The equation of motion characterizing a rotor of a magnetic bearing submitted to eddy current forces is:

m ¨̄zI +(cnr + cr cosθ + jcr sinθ) ˙̄zI +

(k+ crω sinθ − jcrω cosθ) z̄I = 0 (1)

where the position (xI ;yI) of the rotor in the plane perpendicular to the rotation is expressed by a complex vector
z̄I = xI + jyI , and where ω is the rotor spin speed as illustrated in Fig. 1. It can be observed that cross-coupled
terms are present in the stiffness and in the damping forces. Furthermore, in the stiffness force, we observe an
induced stiffness, created by the spin speed and a component of the eddy current force, which is worth crω sinθ .
The consequences of the resistive and inductive effects of the conductor experiencing the variation of flux appear
in the expression of cr and θ , expressed as:

θ = arctan
(
(ω−λIm)Lr

Rr

)
. (2)

cr =
c2

m√
R2

r +((ω−λIm)Lr)
2
. (3)

The global resistance Rr, the global inductance Lr and the constant proportionality factor cm are parameters of the
model specific to each magnetic bearing.

2.1 Advanced electromechanical model
Magnetic bearings are susceptible to work with a broad frequency spectrum and pass gradually from a situation
where the skin effect is negligible to a situation where it becomes predominant. When the skin effect is negligible,
at low frequency, the resistance and inductance are considered to be independent from the frequency, and at high
frequencies the frequency evolution of the resistance and the inductance is generally well-known.
For the above presented electromechanical model, where the resistive and inductive effects of the conductors are
represented by a resistance and an inductance, is thus important to have at our disposal a model of the variation of
these latter with respect to the excitation frequency. The model we use has been presented in [12]. It is based on
the continued fraction expansion of tanh function, and can be written as:

Z̄ (ω) = Rdc + jωelecL0 +
1

3
jωelecL + 1

5
G+ 1

7 jωelecL+...

(4)

This model is based on four parameters: Rdc, L0, G and L.

3



Stability and Consumption of an electrodynamic bearing Kluyskens and Dehez

|z|

F

ω

Figure 2: Configuration to identify the rotating damping cr(ω)

2.2 Parameter identification
The complete electromechanical model described through (1), the equations of motion, but also (2), (3) and (4)
involves seven parameters. These different parameters are the stiffness k, the non-rotating damping coefficient cnr,
the proportionality constant cm, the global inductance Lr, and the global resistance Rr for the rotating damping.
The global inductance and resistance are characterized by four parameters: Rdc, L0, G and L. When quantitative
predictions are desired for a particular magnetic bearing, as it is the case in this paper, these parameters need to
be identified. This identification can be done on the basis of force measurements, obtained through numerical
simulations with finite elements or through experimental measurements.

As the practical case we will examine in the next section is an homopolar electrodynamic magnetic bearing,
the parameters which will be needed to be identified are the parameters characterizing the rotating damping: cm,
Lr and Rr. To identify these latter, we can fix the spinning rotor in an out-centered position, and note down the
values of the forces for different spin speeds (see Fig. 2).

In this particular configuration, the forces predicted by the model, when splitting between the restoring force
in the direction of the center shift z̄, called F// in the text, and the force in the direction perpendicular to the center
shift, called F⊥, are:

F// =
c2

mω2Lr

R2
r +(ωLr)

2 |z̄| (5)

F⊥ =
c2

mωRr

R2
r +(ωLr)

2 |z̄| (6)

It can be noticed that parameters are linked to each other by a scale effect. Only the ratios Rr/c2
m and Lr/c2

m
can therefore be identified. This can be explained and understood by the fact that the Rr and Lr are the parameters
of an equivalent circuit, excited by an electromotive force resulting from a flux variation. As there is a degree of
freedom on the number of coil turns of this equivalent circuit, we choose to normalize by equaling cm to 1.
Knowing the forces evolution for one off-centered position as a function of the spin speed, the identification of Rr
and Lr is done by matching this evolution to the electromechanical model, with a least square criterion.

3 Practical case
The practical case presented here is an electrodynamical bearing (Fig. 3) developed by Lembke in [4] and commer-
cialized by Magnetal AB. This electrodynamical bearing is based on a null flux scheme. Thanks to the homopolar
design, no currents are induced until needed. In other words, currents are only induced when the rotor is out-
centered. In this case, a fixed point on this rotating conductor will experiment a flux change, and currents are
induced. These currents interact with the magnetic field and generate radial forces, as shown in Fig. 4. This means
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Figure 3: Homopolar radial electrodynamic bearing in
[4]
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Figure 4: Principle of the electrodynamical bearing: re-
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Figure 5: Norm of the magnetic induction along the rotor periphery, for |z̄|= 0.2 mm, [4]

Table 1: Data of the electrodynamic bearing in [4]

OUTER MAGNET RING

outer diameter/ inner diameter/ height 38 / 30 / 4 mm
remanent flux Br 1 T

INNER MAGNET RING

outer diameter/ inner diameter/ height 24 / 16 / 4 mm
remanent flux Br 1 T

OUTER INTERMEDIATE WASHER

outer diameter/ inner diameter/ height 38 / 30 / 2 mm
OUTER END PLATES

outer diameter/ inner diameter/ height 38 / 30 / 1 mm
INNER INTERMEDIATE WASHER

outer diameter/ inner diameter/ height 24 / 16 / 2 mm
INNER END PLATES

outer diameter/ inner diameter/ height 24 / 16 / 1 mm
ROTATING COPPER CYLINDER

outer diameter/ inner diameter/ height 29 / 25 / 9 mm
conductivity σ 60 106 (Ωm)−1
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Table 2: Value of the parameters with and without skin effect identified on FEM forces
WITHOUT SKIN EFFECT

R = 0.1925 Ω relative residue on the error
L = 4.41 10−5 H for the forces=0.39

WITH SKIN EFFECT

Rdc = 0.169 Ω

L0 = 3.65 10−5 H relative residue on the error
Lc f e = 3.49 10−5 H for the forces=6.7 10−3

Gc f e = 5.376 S
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Figure 6: (a) Parallel and (b) Perpendicular forces as a function of the spin speed

that there is no stiffness, k = 0 and no non rotating damping cnr = 0 generated by the electrodynamic bearing. The
only parameters which need to be identified are the parameters characterizing the rotating damping parameter cr.

FEM simulations, obtained from [4], give the parallel and the perpendicular forces value for different spin
speed in a fixed out-centered position. In Fig. 5, the computed magnetic field for one given spin speed seen by a
point rotating with the conductor is illustrated, and we see that the excitation is sinusoidal, as supposed. In this
configuration, the forces are then worth (5) and (6). Their evolution with the spin speed is illustrated on Fig. 6, for
a bearing whose dimensions are recapitulated in Table 1, and an eccentricity of 50µm, that is 10% of the air gap.
Based on these forces data, identification can be done considering the resistance Rr and inductance Lr as constants,
i.e. without skin effect, or depending on the spin speed as predicted by (4), i.e. with skin effect. The value of the
identified parameters are given in Table 2. The result on the predicted forces evolution with the spin speed and the
comparison with the FEM calculated forces is shown in Fig. 6. Clearly, the model fits better when taking the skin
effect into account. And this has an impact on the extrapolation of the forces at higher spin speeds, where the skin
effect is more important.

Fig. 7 shows the evolution of the global rotor resistance and inductance when taking the skin effect into account
or not.

With these identified parameters, let us now observe the induced stiffness crω sinθ in Fig. 8. The induced
stiffness stays quite low for low spin speeds, which shows the need to insert launch bearings in the system. The
induced stiffness is directly linked to the spin speed ω , to the rotating damping coefficient, given by (3), and to the
orientation of the force θ , given by (2). When introducing (2) and (3) in the expression of the induced stiffness
crω sinθ , we obtain:

cr ω sinθ = (7)
c2

m

|zI |2
√

R2
r +((ω−λIm)Lr)2

ω
(ω−λIm)Lr√

R2
r +((ω−λIm)Lr)2

.

It is interesting to note that, for a high spin speed, such as ω >> λIm and ωLr >> Rr, (7) tends to a constant value.
Indeed, a first effect predominates when the reactance is much smaller than the resistance Rr >> ωLr, the induced
stiffness increases with the spin speed because the norm of the induced currents do not depend on the spin speed,
there is a n omega in the expression of the induced stiffness and the angle θ grows. But when the reactance is
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Figure 7: (a) Resistance and (b) Inductance as a function of the spin speed
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Figure 8: Induced stiffness crω sinθ

higher than the resistance, this effect is counteracted by the fact that the norm of the induced currents decreases
with the spin speed, and the sinus term sinθ tends to one. When ωLr >> Rr, in (7), the induced stiffness tends to
a constant value.

4 Stability analysis
The aim of this paper is to show how the electromechanical model we developed is able to determine and explain
the dynamical behavior and performances of an electrodynamic magnetic bearing, once its parameters have been
identified properly. Indeed, as it will be explained in this section, the electromechanical system (1) shows the
existence of an unstable spin speed range, or in other words the existence of two limit spin speeds between
which the system behaves unstable in the radial plane. Above the second limit spin speed, the system is always
stable. For appropriate values of the parameters, the rotor is always stable. In this section, based on the presented
electromechanical model, the stability of a simple Jeffcott rotor supported by magnetic bearings is analyzed. The
influence of the different parameters of the electromechanical model on the unstable speed range and on the
induced stiffness is examined.

The system stability, based on (1), is studied by working in the Laplace domain, as explained in [10] and [11].
Using the Routh-Hurwith criterion, when (8) is negative, the system is unstable:

d1c1 =
(
c2

nr + c2
r + cnrcr cosθ

)
(8)(

− 2c2
r mcos2 θ

cnr + cr cosθ
ω

2 +2cnrcr sinθω +2k (cnr + cr cosθ)

)
It has to be noticed that in this equation, θ and cr depend in a non-linear way on ω (see (2) and (3)), but also

on λIm, the rotor whirl frequency, which is the solution of the equation of motion, which prevents an analytical
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Figure 9: Evolution of the limit spin speed with the non rotating damping coefficient

solution. The solutions of (8), found numerically, show the existence of a limited speed range where the behavior
of the system is unstable. Indeed, the spin speed can pass through a region where the system is unstable, and
afterward reach a region where the behavior is stable.

We will now analyze the influence of the model parameters, like the non-rotating damping cnr, the rotor
weight m and the external stiffness k, on the stability.

For this analysis, we start from the different rotating damping parameters identified for the electrodynamical
bearing [4] and summarized in Table 2. We fix the non rotating damping cnr at 100 Ns/m. The mass of the
electrodynamic bearing and the rotor m is fixed at 1 kg. Finally, we suppose there is no external stiffness (k = 0).
This is the case when the electrodynamical bearing is used alone, when no other bearing introduces a radial
stiffness. There are only centering forces due to induced currents.

4.1 Non rotating damping

Fig. 9 shows the evolution of the instability speed range according to the non rotating damping. For a system
where the non-rotating damping is zero, the system is always unstable. On the other extreme, when the non-
rotating damping is high enough, the system is always stable. Between these two extremes, there is a range of
unstable spin speeds which decreases when the non rotating damping increases. We can notice, however, that the
first limit spin speed for each non rotating damping has a very low value, and can be considered null. For the
second limit spin speed, it decreases when the non-rotating damping increases, but it stays at high values.
In practice, introducing non rotating damping in the system is not easy to realize, since this damping has to be pro-
vided without contact between the stator and the rotor. One practical solution consists in inducing currents when
the rotor whirls, but not when it spins, for example by mounting an homopolar permanent magnet on the rotor in
front of a conductive part on the stator. This means mounting permanent magnets on the rotor, which spins very
fast! Another solution could be to act externally on the stator which is not spinning, by placing a damper-spring
between the stator and the ground for instance. This solution has been examined in [13] and [8].
At the same time, a pure viscous constant non-rotating damper has no influence on the induced stiffness value.
This decoupling may be positive because it means that we can act on the stability thanks to this parameter without
influencing the induced stiffness.

4.2 Mass

The instability speed range as a function of the system mass m is presented in Fig. 10. Below a certain value of
m, there is no unstable spin speed. However, physically, m will have a minimal value, the bearing has its proper
mass and has to carry a certain load.
The system mass has no influence on the induced stiffness value.
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Figure 10: Evolution of the limit spin speed with the rotor weight
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Figure 11: Evolution of the limit spin speed with the external stiffness

4.3 Stiffness
To complete this study, let us look at the impact of adding an external stiffness k to the system. Fig. 11 shows
that it has a positive impact on the stability since the spin speed range where the rotor is unstable decreases with
the stiffness, to vanish beyond a threshold value. We can see that adding an external stiffness to the system lowers
the second limit spin speed, but mainly increases the first limit spin speed. When in the previous studies, we
considered the first limit spin speed to be null, when adding external stiffness, this will not be the case anymore.
However, electrodynamic bearings are usually used in addition to a passive magnetic bearing, which then creates
an external radial and axial stiffness, one being negative. With a negative radial stiffness, the upper limit spin
speed, which allows a come back to stability, continues to increase.
Let us finally notice that the external stiffness has no influence on the induced stiffness value.

5 Power consumption
As electrodynamic bearings are fully passive devices, one might think that it is an interesting bearing to use in
applications where the power consumption of the bearing has to be minimized. To have an estimation of the
power consumption of the here above presented bearing, our electromechanical model can be used to realize a
power balance, following this equation:

∑Pin j = ∑Pdis +
dWcin

dt
+

dWpot

dt
, (9)
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where ∑Pin j represents the power injected into the system, that it is to say, the power consumption of the system,
∑Pdis represents the power dissipated into the dampers of the system, dWcin

dt represents the variation of kinetic
energy inside the system and dWpot

dt represents the variation of potential energy inside the system.
Concerning the kinetic energy inside the system, it can be written:

Wcin =
m( ˙̄zI ˙̄z∗I )

2
,

and from there on the variation of kinetic energy becomes:

dWcin

dt
=

1
2
(m ¨̄zI ˙̄z∗I +m ¨̄z∗I ˙̄zI)

=
1
2
(F̄I ˙̄z∗I + F̄∗I ˙̄zI)

= ℜ(F̄I ˙̄z∗I ). (10)

According to (1), the forces in the inertial frame can be expressed as

F̄I =−(cnr + cr cosθ + jcr sinθ) ˙̄zI− (k+ crω sinθ − jcrω cosθ) z̄I ,

and (10) becomes

dWcin

dt
= ℜ(−(cnr + cr cosθ + jcr sinθ) | ˙̄zI |− (k+ crω sinθ − jcrω cosθ) z̄I ˙̄z∗I )

= −(cnr + cr cosθ) | ˙̄zI |− (k+ crω sinθ) ℜ(z̄I ˙̄z∗I )− crω cosθ ℑ(z̄I ˙̄z∗I ). (11)

The potential energy of the system is

Wpot =
k (z̄I z̄∗I )

2
,

which means that the variation of the potential energy inside the system, it can be written:

dWpot

dt
=

k
2
( ˙̄zI z̄∗I + z̄∗I ˙̄zI)

= kℜ(z̄I ˙̄z∗I ). (12)

Finally, the power dissipated into the dampers of the system can be split into two parts: the power dissipated into
the non-rotating damping, and the power dissipated into the rotating damping. First, the power dissipated into the
non-rotating damper can be expressed as:

Pdis,cnr = ℜ(F̄I,cnr
˙̄z∗I )

= cnr | ˙̄zI |2 . (13)

Second, to calculate the power dissipated into the rotating damper, it is important to place ourselves on the rotor,
rotating at spin speed ω . The forces, resulting from the rotating damper, and expressed in a frame rotating at spin
speed ω , predicted by the electromechanical model are equal to:

F̄X ,cr = (cr cosθ + jcr sinθ) ˙̄zX (14)

where z̄X is the complex expression of the rotor coordinates in the rotating frame X̂. By applying the appropriate
frame transformation, the rotor position in the inertial frame can be linked to the rotor position in the rotating
frame through z̄X = z̄Ie− jωt . This means that the rotor speed is worth:

˙̄zX = ( ˙̄zI− jω z̄I)e− jωt (15)

The mechanical power dissipated by the rotating damping can now be expressed as:

Pdis,cr = ℜ(F̄X ,cr
˙̄z∗X )

= (cr cosθ + jcr sinθ) ˙̄zX ˙̄z∗X (16)

10



Stability and Consumption of an electrodynamic bearing Kluyskens and Dehez

From (15) and (16), it can be seen that the mechanical power is worth:

Pdis,cr = ℜ

(
(cr cosθ + jcr sinθ)

(
| ˙̄zI |2 + jω ( ˙̄zI z̄∗I − ˙̄z∗I z̄I)+ω

2 |z̄I |2
))

= cr cosθ | ˙̄zI |2 + cr cosθω
2 |z̄I |2 + crω cosθ ℑ( ˙̄z∗I z̄I) (17)

Finally, replacing (11), (12), (13) and (17) into (9) leads to an expression for the power injected in the system:

∑Pin j = −crω sinθℜ(z̄I ˙̄z∗I )+ cr cosθω
2 |z̄I |2 (18)

The power injected into the system, in steady state, only depends on the rotating damping parameters. Or in other
words, the power injected into the system, to maintain the rotor spinning at spin speed ω , is completely dissipated
in the rotating damper.

6 Dynamical behavior
Previous developed equations of motion (1) of the parameterized electromechanical model considered that the
rotor was a simple Jeffcott rotor with a constant spin speed, which is an oversimplification of the real world. In
reality, the center of mass will not coincide with the geometric center, the rotor will not be a point mass, but will
have moments of inertia. When rotating at very high spin speed, the flexural modes of the rotor might have to
be taken into account, and so on. But even for more complex systems, the electromechanical model is an useful
tool to predict the damping and the stiffness developed by the forces due to the induced currents at each moment.
This damping and stiffness terms need then to be introduced into the mechanical equation governing the system,
according to the hypothesis that are then considered: point mass rotor or not, perfectly balanced or not, small
displacements or not. . .

6.1 Constant external load
In this section we will examine, through simulations, the behavior of the previously identified electrodynamic
bearing when submitted to a constant external load of 5 H. The induced stiffness developped by this bearing has
been examined on fig. 8. There is a non-rotating damper in the system to stabilize the bearing, and its value is
140 Ns/m, which means that without any external force, the rotor behaves stable for every spin speed. The rotor
is perfectly balanced and its weight is 1 kg. The behavior of the rotor is illustrated in fig. 12. In fig. 12 (a), we
see that the rotor does not spin fast enough (ω = 500 rad/s) to induce enough stiffness in order to counteract the
external load. But in fig. 12 (b), the rotor spins fast enough (ω = 2000 rad/s) and the rotor reaches an out-centered
equilibrium position.

The consumption of the bearing as a function of the spin speed is illustrated in fig.13. For low spin speed,
the induced stiffness is not high enough, the rotor does not find an equilibrium position, which means a higher
consumption. Once the value of the induced stiffness high enough to stabilize the rotor, the power consumption
increases with the spin speed.

6.2 Unbalanced rotor
In the real world, the center of mass will never exactly coincide with the geometric center of the cross section of
the shaft. The presence of this eccentricity ε will cause a static unbalance mε . Supposing that the spin speed ω is
constant, this unbalance generates a synchronous excitation . Then the motion of the geometric center will consist
on the superimposition of the free motion, solution of the homogeneous differential equation (1), and a circular
motion with an angular speed ω , particular solution of the differential equation. This means that the stability of
the unbalanced system depends on the stability of the solution for free whirling. When this latter leads to a stable
behavior, the unbalanced system is stable, but when it leads to an unstable behavior, this behavior will occur even
if perfectly centered and without exterior disturbance because the unbalance will create the excitation. This is
illustrated in fig. 14, with a non-rotating damping of 100 Ns/m. This shows the importance of having a correct
dynamic model to be able to predict the dynamic performances of the whirling rotor in the useful speed range.

Regarding to the consumption of the bearing, when spinning at 400 rad/s and when modifying only the amount
of non-rotating damping present, we can see in fig. 15 that, once the non-rotating damping is high enough to
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(a) (b)

Figure 12: Rotor motion in the xy radial plane for a spin speed ω of (a) 500 rad/s: the rotor is unstable, (b) 2000
rad/s: the rotor is stable

Figure 13: Power consumption of the bearing as a function of the spin speed, when submitted to a constant external
load

stabilize the system, an increase of the non-rotating damping leads to a increase of the power consumption. For a
non-rotating damping of 200 Ns/m, the instantaneous power is shown in fig. 16. This shows the repartition of the
consumption in the stator, which is in this case in the non-rotating damping, and in the rotor, or in other words in
the rotating damping.

7 Conclusion

The work presented in this paper develops how a parameterized electromechanical model which allows modeling
the dynamical radial behavior of rotating electromagnetic systems submitted to induced current forces can be used
to predict the dynamical behavior of a particular electrodynamical bearing and its consumption. We have shown
that the model predicts unstable speed range. The model also predicts that the induced stiffness produced by
eddy currents in the rotor is a function of the spin speed. Therefore, when working with electrodynamic bearings,
attention has to be paid on those both aspects: instability and stiffness.
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Figure 14: Rotor motion in the xy radial plane for a spin speed ω of (a) 1000 rad/s: the rotor is unstable, (b) 10000
rad/s: the rotor is stable
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Figure 15: Power consumption of the bearing as a func-
tion of the non-rotating damping
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Figure 16: Instantaneous power consumption of the
bearing, when spinning at ω = 400 rad/s, and when the
non-rotating damping is worth 200 Ns/m
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