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Abstract 
 

The main aim of the paper is to operate an AMB system inside the magnetically saturated 
region. We investigate how to stabilize a highly nonlinear AMB system with the actuator 
magnetic saturation by estimating the system states and parameters of the unconstrained bearing 
in real time. The stabilization is achieved by a combination of the controller and the extended 
Kalman filter to estimate the states of the plant. In the extended Kalman filter, the magnetization 
behavior has been modeled by using low-order piecewise polynomial approximation. The 
extended Kalman applied to the AMB system introduces an additional challenge because of the 
computational burden, numerical stability when computing the inverse of the innovation 
covariance matrix, and the non-continuous derivative in the computed Jacobeans. Feasibility of 
different control configurations is examined. As the case study we use the 1 DOF balancing 
beam model. The proposed solution for the system operation in the magnetic saturation provides 
such benefits as: the reduced size and costs of bearings, improved robust performance and 
stability, and an increased controllability region with respect to control variables. 

 
 

1  Introduction 
 

In a typical AMB system, the design of the bearings, selection of the operation conditions, and the assumed signal 
levels are optimized to result in limited and predictable parameter uncertainties. At the same time, such an approach 
results in an oversized iron part of the bearings to overcome the magnetic saturation of iron and high bias currents to 
further linearize the magnetic force relation with the position and control currents. The dynamic behavior of the 
amplifiers can be kept close to the assumed linearized model by limiting the currents and rotor position and by 
applying such an inner current feedback that prevents the voltage saturation. These design precautions allow more 
straightforward application of linear control methods, practical control implementation, and increased robust 
stability of the closed-loop control system. 

Complex control algorithms using accurate plant modeling allow robust system behavior despite the nonlinear 
system dynamics. The extended Kalman filter and its variations provide the common solutions for the estimation of 
unmeasured system states and unknown system parameters in many applications [1]. However, in AMBs, the 
relatively fast sampling frequency, typically in the range of 10–40 kHz, poses a challenge for the implementation of 
the matrix inversion and Jacobian computations for high condition number matrices in real time. Therefore, this 
subject has not been sufficiently covered in the literature. Modern signal processors and programmable circuits with 
mature programming tools provide new opportunities for complex AMB control algorithms. 

Schuhmann et al. [2] presented the application of the extended Kalman filter for the reduction of noise in the 
system with collocated capacitive position sensors. In [2], simple nonlinear force without saturation has been 
considered. Zingerli and Kolar [3] applied a complex nonlinear flux observer with constant observer feedback gain 
to the inner current-control loop of the cascaded AMB controller. 

This paper focuses on the application of the extended Kalman filter to an AMB system with magnetic 
saturation. The objective is to investigate how to stabilize a highly nonlinear AMB system with the actuator 
magnetic saturation. The expected result is to use the iron core material beyond the saturation point without losing 
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stability. The observers for the classical current, voltage, and flux control schemes [4] for the measured bearing 
currents and the angle of the magnetic bearing system are examined. 

As a case study, we use a balancing beam model, which is based on the laboratory test rig presented in [5]. The 
active parts have been redesigned such that the high magnetic saturation of the iron is achieved around the nominal 
operational point. The relatively simple one-degree of freedom system comprises a straightforward mechanical  
implementation. 

In order to be able to formulate a magnetic force relation of reasonable complexity suitable for the extended 
Kalman filter implementation, the magnetization behavior has been modeled using a low-order piecewise 
polynomial approximation. Such a modeling may pose an additional challenge as the non-continuous derivative in 
the computed Jacobian might result in a solution that is more likely numerically unstable. However, it also simplifies 
the analytical expressions for system dynamics without compromising the accuracy of the saturation model. 

 
 

2  Modeling 
 

We select a straightforward LQ control [6] to test with the different AMB control methods and extended Kalman 
configurations. The plant modeling with magnetic saturation for each described AMB control method is considered. 
The parameters of the balancing beam model are selected such that the magnetic saturation of the iron core appears 
for the currents less than the maximum coil current. The parameters of the balancing beam are listed in Appendix A. 

 
2.1  Plant model 

 
Now, the target is to include the magnetic saturation of iron in the dynamical description of the plant. Using 
Ampere’s Circuital Law, assuming a constant magnetic flux density B, and neglecting the stray fluxes and eddy 
currents, we can approximate the magnetic circuit equation as 

 

 NilBlH 2
0

FeFe  (1) 

 
where l and i are the air gap (half length of the flux path in the air for horseshoe electromagnet) and the coil current. 
N is the effective number of coil turns of the AMB stator, HFe is the magnetic field strength in the iron, and lFe is the 
length of the flux path in the iron. We model the BH saturation curve as a first-order piecewise polynomial 

  
 FeHbaB kk , (2) 
 

where ak and bk are the polynomial coefficients of the saturation model. The flux density and, consequently, the 
magnetic force of a pair of opposite electromagnets can be obtained by substituting the magnetic field strength from 
(1) into (2) as 
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l0, and r are the average air gap at the zero beam angle  and the length of the beam arm that is equal to the pivot-to-
actuator distance. In each time step, when computing the dynamic model of the plant, ak and bk are selected 
according to the last air gap and coil current for each electromagnet using (1). The applied saturation curve and the 
saturation as a function of the coil current and the airgap are presented in Figure 1. Assuming infinite relative 
permeability of iron, the magnetic force fm from (4) simplifies, as a function of bearing currents i1, i2, and , to 
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Typically, the force relation is linearized in the assumed operational point (l0, i0), for example, by applying the bias 
current i0 to all the electromagnets and introducing the control current ic. For the synthesis of the linear controller, 
(5) becomes 
 

 rkikf li cm . (6) 
 
The current stiffness ki and the position stiffness kl for the set of opposite electromagnets are 
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Following Newton’s Law, the dynamic equation for the outer position control is  
 

 .mrfJ  (8) 
 
where J is the moment of inertia of the beam. 

 
 

 
Figure 1: (a) BH saturation curve and (b) magnetic flux density as a function of the coil current and airgap 

 
 
2.1.1 Current Control 

 
This control scheme comprises an inner current control loop, which is often built into the amplifier. In the outer 
position control, the control current ic is  treated  as  a  state  variable.  In  the  current  control,  it  is  assumed  that  the  
amplifier outputs i1 and i2 follow the command reference signals ir1 and ir2, where ir2 = (i0+ic), ir1 = (i0-ic).  

The control inputs are the currents i1 and i2 and the measured output is the angle . However, the current 
changes are dependent on the DC link voltage udc and the internal dynamics of the current amplifiers. The dynamics 
of the current-controlled amplifier, when neglecting the losses from eddy currents, flux leakage, and magnetic 
hysteresis, can be described using Ohm’s Law and the change in the flux linkage  in time 
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where R is the resistance of the coil. In the operational point, when assuming infinite relative permeability of iron, 
the coil inductance L and the velocity-induced voltage coefficient ku are 

 

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

H [A/m]

B 
[T

]

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

i [A]

B 
[T

]

 

 

l=l
0

l=0.01 l0
l=1.99 l0

(b)



Extended Kalman filter applied to an AMB system with strong magnetic saturation Jastrzebski et al. 

4 

 ,
2

2
air0
l

NS
L

 
.

22 2
0

air0
2

0 i
u

k

l

SiN
k  (10) 

 
The proportional inner current control loops can be modeled as u=Kc(ir-i).  The current gain Kc is selected such that 
an assumed inner loop bandwidth bw=2000 rad/s. Additionally, the voltage saturation can be modeled by 
substituting the input voltage u as a piecewise polynomial of the reference voltage ur, for example 
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2.1.2 Voltage Control 

 
The voltage control scheme replaces the above-presented cascaded controller structure with one control loop. In (9) 
we can see that the voltage, not the coil current, is the actual system input. The joint linearized equations including 
the voltage-current relation (9), the force-current relation (4), and the equation of motion (8) form the voltage 
control method. Some discussion about the tradeoffs of the current vs. voltage method can be found, for example, in 
[7]. 

An alternative way to present the state equations is to express the magnetic force of a pair of opposite 
electromagnets using the flux  by substituting the flux densities in (4), 
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The flux can be calculated by integrating the applied voltage u for each electromagnet, 
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The coil currents are among the measured outputs of the plant 
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2.1.3 Flux Control 

 
As a third alternative, the flux control scheme can be applied [4]. However, instead of using the flux measurement as 
in [4], we apply the estimated flux from the measured currents [3,8]. In this case, the outer position controller 
provides the reference force signal fr to the inner flux controllers. In the inner controller, the reference force can be 
changed to the reference flux 

 
 .air0rr Sf  (14) 
 

In the basic case, the proportional current feedback is replaced with the flux feedback control ur = K ( r- es), where 
the feedback gain K  is selected analogically to the current feedback gain Kc. The estimated flux es is computed 
using the flux observer 
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Now, the position controller is not dependent on the magnetic force nonlinearities. Therefore, the implementation of 
the extended Kalman filter (EKF) can be considered for the flux observers in the inner control loops. 

 



Extended Kalman filter applied to an AMB system with strong magnetic saturation Jastrzebski et al. 

5 

2.2  Extended Kalman Filter 
 

The EKF is a nonlinear version of the popular Kalman filter that uses current mean and covariance estimates as a 
linearization point. We consider a nonlinear discrete-time stochastically disturbed process model with Gaussian 
uncorrelated noise processes wk and vk described by 

 
 ,, 111|11| kkkkkk f wuxx  ,1|11 kkkk g vxy  (16) 
 

where x and y are the state vector and the output vector, respectively. We use the discrete-time formulation as 
follows [9, 10]. First, the discrete prediction state estimate x̂  and the output estimate ŷ  of the nonlinear plant 
together with the Jacobian matrices are computed  
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where u is the vector of control inputs that are currents or voltages depending on the control method. The subscript 
k|k-1 denotes the estimation at the time step k with the measurement from the time step k+1. Next, we compute the 
covariance matrix P of the estimation error 
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and the estimation output error 
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The innovation covariance matrix S and the near-optimal Kalman gain K are 
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1| kkkkkk RCPCS  .1T
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The new state vector and covariance become 

 
 ,~ˆˆ 1|| kkkkkk yKxx  .1|| kkkkkk PCKIP  (21) 
 

where Q and R are the covariance matrices of the process and observation noises, respectively. 
In the presented implementation, the fast calculation time has been the priority, and therefore, the continuous-

time nonlinear model (17) has been discretized using numerical integration and series expansion. 
 
 

3  State Feedback Control  
 

In order to test the EKF for different control methods, we implement the LQ state feedback control. The optimal 
feedback gain L is obtained by solving the minimization problem with the quadratic performance index Jq, that is, 
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where Qr, Rr, and t are the state weighting matrix, the control input weight matrix of a regulator design, and time. To 
determine the diagonal weighting matrices Qr and Rr, we apply Bryson’s rules [11]. The diagonal weighting 
coefficients are heuristically fine-tuned. 

After implementing the filter, the estimation dynamics are selected. First, the matrices of process noise variance 
Q and the measurement noise variance R are selected similarly to the diagonal weighting matrices Qr and Rr. 
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Second, the Q and R are scaled by the common constant factor such that the steady-state linearized estimator 
dynamics are up to three times faster than the LQ regulator dynamics. The resulting closed-loop eigenvalues of the 
linearized steady state solutions are given in Appendix B. 

 
 

4  Simulation Results 
 

4.1  Current Controlled Bearings 
 
First, the current controlled AMB balancing beam system is connected to the controller with state vector, which 
comprises the tilting angle and angular velocity. The regulator weighting matrices and the noise variance matrices 
are selected such as: 
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The cascaded controller is tested with the voltage plant model based on flux state variables. The closed-loop 
responses for the LQ regulator and the steady state linearized estimator are presented in Figure 2. The responses 
improve when the steady-state estimator is replaced with the EKF as shown in Figure 3. 
 
 

 
Figure 2: Closed-loop simulation of the lift up and step reference response when using steady-state linearized 

estimator: (a) tilting angle of the balancing beam and (b) coil currents 

 
Figure 3: Closed-loop simulation of the lift up and step reference response when using EKF with modeled magnetic 

saturation: (a) tilting angle of the balancing beam and (b) coil currents 
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The closed-loop performance of the EKF based on saturation model improves slightly compared to the EKF based 
on classical analytical force model. When lifting the beam from 0.95 0 initial angle to  = 0, the resulting minimum 
angle before stabilizing at zero is -1.39 rad and -1.42 rad when using the model (4) and (5), respectively. 

Second, the coil currents are added to the state vector in the controller employing (9). The order of the position 
outer controller increases from two to four. The regulator weighting matrices and the noise variance matrices are 
selected such as: 
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The closed-loop responses for the LQ regulator and the steady-state linearized estimator are presented in Figure 4. 
The responses improve when the steady-state estimator is replaced with the EKF that includes magnetic and voltage 
saturation models as shown in Figure 5. When lifting the beam from 0.95 0 initial angle to  = 0, the resulting 
minimum angle before stabilizing at zero is -1.00 rad and -1.01 rad when using the model with the saturations and 
without, respectively. Evidently, the coil currents are such that the system is not deeply saturated. The discrete 
implementation of this controller required decreasing the sampling time from 20 µs to 4 µs. 
 
 

  
Figure 4: Closed-loop simulation of the lift up and step reference response when using steady-state linearized 

estimator: (a) tilting angle of the balancing beam and (b) coil currents 
 
 

  
Figure 5: Closed-loop simulation of the lift up and step reference response when using EKF with modeled magnetic 

saturation and voltage saturation: (a) tilting angle of the balancing beam and (b) coil currents 
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4.2  Voltage Controlled Bearings 
 
The voltage controlled AMB balancing beam system is connected to the non-cascaded controller. The regulator 
weighting matrices and the noise variance matrices are chosen the same as in the case of the more complex position 
controller (24) for current controlled AMB. However, the maximum current is replaced with the dc-link voltage in 
the control input weight matrix of a regulator design. 

The closed-loop responses for the LQ regulator and the steady-state linearized estimator are presented in Figure 
6. The responses improve when the steady-state estimator is replaced with the EKF as shown in Figure 7, even if the 
scaling matrices are not optimal. The closed-loop performance of the EKF based on saturation model improves 
marginally compared to the EKF based on classical analytical force model. 
 
 

  
Figure 6: Closed-loop simulation of the lift up and step reference response when using steady-state linearized 

estimator: (a) tilting angle of the balancing beam and (b) coil currents 

  
Figure 7: Closed-loop simulation of the lift up and step reference response when using EKF with modeled magnetic 

saturation: (a) tilting angle of the balancing beam and (b) coil currents 
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dynamics of the inner current control loops are included in the EKF implementation, the computational complexity 
is greater than in the case of the voltage-controlled AMBs. The voltage control based on fluxes or currents as the 
state variables are similarly suitable for the computationally efficient implementation of the EKF. Moreover, the 
voltage saturation does not have to be implemented when the voltage control is applied. In the case of the flux-
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controlled AMBs, the inner control loop linearizes the magnetic force behavior leaving the implementation of the 
EKF with magnetic saturation questionable for the outer controller and complete plant dynamics. 
 Future work will focus on the experimental evaluation of the selected control configurations with the EKF. We 
plan  to  extend the  proposed solution  to  more  complex AMB rotor  systems.  The  inclusion  of  hysteresis  and eddy 
current models will be studied for some bearing structures. Additionally, the implementation of the EKF with the 
fluxed controlled AMBs and different regulator structures requires closer examination. 

 
 

References 
 

[1] H.W. Sorenson. Kalman Filtering: Theory and Application, IEEE Press, 1985. 
[2] T. Schuhmann, W. Hofmann, R. Werner. Adaptive Linear and Extended KALMAN Filter Applied to AMB 

with Collocated Position Measuring, ISMB10, 2006. 
[3] C.M. Zingerli and J.W. Kolar. Novel Observer Based Force Control for Active Magnetic Bearings, IPEC, pp. 

2189–2196, 2010. 
[4] H. Bleuler, D. Vischer, G. Schweitzer, A. Traxler and D. Zlatnik. New Concepts for Cost-effective Magnetic 

Bearing Control, Automatica, Vol. 30, No. 5: 871–876, 1994. 
[5] T. Hu, Z. Lin, W. Jiang, P. E. Allaire. Constrained Control Design for Magnetic Bearing Systems, Journal of 

Dynamic Systems, Measurement, and Control, Vol. 127: 601–616, 2005. 
[6] Y.N. Zhuravlyov. On LQ-Control of Magnetic Bearing, IEEE Transactions On Control Systems Technology, 

Vol. 8, No. 2: 344–350, 2000. 
[7] G. Schweitzer, E.H. Maslen, Editors. Magnetic Bearings: Theory, Design, and Application to Rotating 

Machinery, Springer, New York, 2009. 
[8] R.P. Jastrzebski1, A. Smirnov, O. Pyrhönen. Force Controllers for AMB Systems with Position and Current 

Feedback, Solid State Phenomena, accepted for publication, 2012. 
[9] C.K. Chui and G. Chen. Kalman Filtering With Real-Time Applications. 3rd ed. Berlin, Germany: Springer-

Verlag, 1999. 
[10] T. Schuhmann, W. Hofmann, R. Werner. Improving Operational Performance of Active Magnetic Bearings 

Using Kalman Filter and State Feedback Control. Transactions On Industrial Electronics,  Vol.  59,  No.  2:  
821–829, 2012. 

[11] G.F. Franklin, J.D. Powell and M. Workman. Digital control of dynamic systems, 3rd edn. Addison-Wesley, 
Reading, 1998. 

 
 

Appendix A 
 

Parameter Value Parameter Value Parameter Value 
 

N 2 280 R 2  ki 340 N/A 
lFe 0.2 m imax 10 A kx 1.36e6 N/m 
Sair 1.08e-4 m2 i0 2 A Ts 20 µs 
r 0.16 m udc 150 V 0  0.0031 rad 
l0 5e-4 m bw 2000 rad/s 0  383 rad/s 
J 0.0093 kg m2 L 0.0426 H   

 
Table 1: Test rig parameters 
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Appendix B 
 

Control configuration Eigenvalue Damping Frequency 
 

Current control, no actuator model in the position control loop 
(regulator) 

-2.39e+03 + 1.38e+03i 
-2.39e+03 - 1.38e+03i 

8.66e-01 
8.66e-01 

2.76e+03 
2.76e+03 

(estimator) -2.88e+03 + 2.13e+03i 
-2.88e+03 - 2.13e+03i 

8.04e-01 
8.04e-01 

3.58e+03 
3.58e+03 

Current control, actuator model in the position control loop 
(regulator) 

-2.40e+03 
-1.73e+03 + 1.87e+03i 
-1.73e+03 - 1.87e+03i 
-2.18e+03 

1.00e+00 
6.79e-01 
6.79e-01 
1.00e+00 

2.40e+03 
2.55e+03 
2.55e+03 
2.18e+03 

(estimator) -2.78e+03 + 2.63e+03i 
-2.78e+03 - 2.63e+03i 
-5.25e+03 
-5.40e+03 

7.27e-01 
7.27e-01 
1.00e+00 
1.00e+00 

3.83e+03 
3.83e+03 
5.25e+03 
5.40e+03 

Voltage control 
(regulator) 

-1.33e+03 
-6.81e+02 + 1.16e+03i 
-6.81e+02 - 1.16e+03i 
-1.40e+02 

1.00e+00 
5.08e-01 
5.08e-01 
1.00e+00 

1.33e+03 
1.34e+03 
1.34e+03 
1.40e+02 

(estimator) -2.75e+03 + 2.74e+03i 
-2.75e+03 - 2.74e+03i 
-5.00e+03 
-5.00e+03 

7.07e-01 
7.07e-01 
1.00e+00 
1.00e+00 

3.88e+03 
3.88e+03 
5.00e+03 
5.00e+03 

 
Table 2: Closed-loop characteristics of tested control configurations 

 


