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Abstract

To optimize stiffness per magnet volume ratio, whichs major intentions are to reduce the costs and
to preserve material resources, an energy based analytical calculation method of the radial stiffness for
permanent magnetic bearings with arbitrary magnetization is introduced. To simplify the calculations
the stiffness is calculated from a planar model, what means that the annular ring magnets are treated
as infinitely long parallel bars. The error made by neglecting the curvature effect is investigated and
shows to be negligible for reasonable designs. Using this calculation method, optimal geometries for
permanent magnetic ring bearings with Halbach type magnetization are presented. Thereby, discrete
Halbach stacking, i.e. several stacked rings with rotating magnetization from axial to radial and so on,
and continuous Halbach magnetization, i.e. one magnet that is magnetized sinusoidal, is distinguished.
To show the possible improvement of stiffness per magnet volume ratio, also the characterizing values
for standard single ring bearings and standard stacked structures are calculated.

1 Introduction

Besides the very high robustness of passive permanent magnetic ring bearings, the relatively low costs
compared to active magnetic bearing units was one of the main advantages until a few years ago. Although
the rare earth prices are decreasing since the past half year, the global trend of the rare earth market, with
raw material prices rising considerably in the recent past, tends to overcome this. To keep the total costs of
systems including passive magnetic bearings low, the objective of optimal stiffness per magnet volume ratio
has taken on new significance. Considering a single ring bearing, this objective is a function of only two
major dimensionless parameters, as shown by Lang [1]. These parameters are the ratios a/h and b/h with
the magnets cross section dimensions a and b and the air gap width h. A third characterizing parameter,
depending on the mean air gap radius rh, has only a minor relevance, what will also be shown in the paper.
But this single ring optimum can be improved by more than 40% when stacked structures with alternating
magnetization of the rings are used. While Lang and others showed this in a generally valid form, Yonnet
showed for a special case, that the ratio of stiffness per magnet volume can be raised even more when using a,
as Yonnet called it, “rotating magnetization”, i.e. the direction of magnetization varies with 90 degree steps,
from axial to radial and so on [2]. A generalized discussion of such stacked Halbach-type structures with
universally valid results, based on dimensionless parameters, will be presented in this paper. Following the
refinement prozess of the disretization steps of the magnetizations rotation, from 180° (standard stacking) to
90° (Halbach stacking) one comes to a continuous rotation of the magnetization, as e.g. presented in [3]. In
order to find an analytical solution for this problem, a calculation technique based on the interaction energy
of magnetic dipoles is introduced.*edmund.marth@jku.at, Altenbergerstrasse 69, 4040 Linz, Austria, Phone/Fax: +43 732 2468 6432/6423
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2 Stiffness calculation of magnets with an arbitrary magnetization

distribution

The analytical calculation of forces and stiffness of passive permanent magnetic bearings has been described
in numerous publications. Based on the “source” of magnetic induction different calculation approaches can
be found. The vast majority utilizes magnetic surface charges to model uniformly axial or radial magnetized
rings [4–7]. What is the more adequate formulation from a physical point of view is the one using so called
current sheets. This approach was used by Lang for axial magnetized rings [8]. Both methods are basically
founded on three dimensional magnetic (fictive) charge- or current density distributions respectively, which
can be reduced to surface charges or laminar current sheets for the case of homogeneous magnetization
directions. For an arbitrary, i.e. not uniform, magnetization the divergence or rotation of the describing
charge- or current density distribution has to be calculated respectively, what would lead to a more complex
calculation. An interesting approach was introduced by Yonnet, starting one abstraction level above the
charge– or current model. In [9] the calculation of induction, forces and stiffness is based on elementary
magnetic dipoles. The advantage thereby is, that the magnetization function M is a direct parameter and
no rotation, divergence or other laminar surrogate parameters have to be calculated, regardless of the function
of the magnetization distribution.

Beside the different modeling concepts concerning the “source” of magnetic induction, two different geo-
metrical representations are widely found – the exact one considering the rotational symmetry of the rings,
e.g. [8], and an approximation, where the induction is calculated from an infinitely long rod. The curvature
effect is thus neglected, allowing a simplified calculation [9], [4].

The calculation technique used in this publication is based on [9], with elementary magnetic dipoles
describing the overall magnetization of the bearing. Furthermore, the approximate plane model will be used
describing the annular devices, whereby an error analysis concerning the plane model representation of the
magnet rings is presented in a following section.

2.1 The planar model

Figure 1: Modeling of
an arc segment as a pla-
nar line element.
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To simplify the force and stiffness calculation of passive magnetic bearings the point wise repulsive radial
force dFr(ϕ) acting along the circumference of the bearings rings is assumed to be

dFr(ϕ) = −

∫ h(ϕ)

∞

k̄x̄(x̄) dx̄ , (1)

where k̄x̄ is the stiffness per length of two parallel magnets as zoomed out in Figure 1. The total radial force
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F (ϕ) acting on a ring, lets say in the ϕ = 0◦ direction, thus is

F (0) =

∫ 2π

0

dFr(ϕ) cos(ϕ)rh dϕ = −

∫ 2π

0

∫ h(ϕ)

∞

k̄x̄(x̄) dx̄ · cos(ϕ)rh dϕ (2)

where h(ϕ) in its general form is defined as

h(ϕ) = h0 + (e + h∆) cosϕ . (3)

In (3) h0 denotes the nominal air gap width of a concentric configuration and e describes an eccentricity of e.g.
the inner ring in the ϕ = 0◦ direction. With the additional parameter h∆, describing small free movements
again in the ϕ = 0◦ direction, the radial stiffness kr with a certain eccentricity e can be calculated by
kr = − dF

dh∆
using the Leibniz integral rule.

k = −
dF

dh∆
=

∫ 2π

0

k̄x̄

(

h(ϕ)
)

cos2(ϕ)rh dϕ (4)

When looking at the linearized stiffness (h∆ → 0) at concentric position (e = 0) the value h(ϕ) = h0 = const.
and thus (4) leads to

kr = k̄x̄(h0)πrh . (5)

The actual ring stiffness is equal the stiffness of the planar model with half the length of the rings perimeter.
The total axial stiffness can be found straight forward to be the stiffness per length multiplied with the rings
total perimeter,

kz = k̄z̄(h0)2πrh . (6)

How to calculate k̄ will be shown later on in the paper.

2.2 Error of the planar model

Basically, the planar model is exact for the case of rh → ∞. This is because the curvature effect vanishes for
this theoretical case and just this mentioned curvature effect is neglected when modeling annular problems
as planar configurations. However, in reality the curvature has a more or less influence on the stiffness value
of passive magnetic bearings. How big this error is, will be shown in this section depending on all error
relevant parameters.

At first two main arrangements of passive magnetic bearings have to be distinguished – attractive and
repulsive configurations. In Figure 2 single ring radial bearings in repulsive and attractive configuration are

ba

br

a
a

a
r

h

h
rh

Figure 2: Passive magnetic single ring radial
bearings stabilized by repulsive (upper config-
uration) and attractive (lower configuration)
forces. With ar = ba and aa = br (7) holds
true (with same air gap dimension h for both
configurations).
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pictured. Based on the planar model it can be shown, that

k̄r,rep = f(a, b, h) ⇔ k̄r,att = f(b, a, h) (7)

holds true [10]. Nevertheless, the error caused by the planar model is not the same for repulsive and attractive
configurations, what in fact means that (7) is not exact for the real case. In Figs. 3 and 4 the error is shown for
single ring bearings as function of the dimensionless parameters a/h, b/h and rh/h for attractive and repulsive
configurations respectively. When looking at the error plots of attractive configurations, Figure 3(a) and
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Figure 3: Relative error of the radial stiffness of attractive single ring bearings, calculated as err =
(kplanar/krotsym − 1) · 100. The exact solution krotsym was gained by the solutions given in [11]. The planar
solution kplanar is derived from (5) and (20). The error is shown for different values of rh/h.

3(b), one can see that the qualitative error as function of the parameters rh/a and rh/b is only dependent on
the parameter rh/h. The maximum error always lies around rh/a ≈ 1 and rh/b ≈ 0.65 and is below 10% even
for very small vaues of rh/h. With rising values of rh/h the error gets significantly smaller. When comparing
Figs. 3(a) and 3(b), take care of the different values of the a/h and b/h axes, e.g. for a bearing with a magnets
cross sections of a/h = 5 and b/h = 7 the error for rh/h = 5 is more than 9%, with rh/h = 25 a bearing with
the same cross sections and airgap (only with a bigger radius) has an error around 0.2%.

Later on it will be shown, that for a reasonable stiffness per magnet volume ratio the value of the
parameters a/h and b/h should be below 3, whereby the error caused by the planar model is always smaller
than 3% with rh/h ≥ 5 for an attractive type single ring bearing.

Even the, lets say, worst case error of 3% for attractive single ring bearings is quite good, the error for
repulsive configurations is much smaller, as can be seen from the figures 4(a) and 4(b). For reasonable cross
section geometries – as mentioned before – the error can be said to be below 1% for rh/h ≥ 5 and is rapidley
shrinking further for growing values of rh/h.

Conclusion: What can be seen is, that the error caused by the planar model is very small and might be
negligible when thinking about fabrication tolerances of the used permanent magnets or inaccuracies when
assembling the bearing system.
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Figure 4: Relative error as shown in Figure 3 but for repulsive configurations.

2.3 Stiffness calculation based on the planar model

2.3.1 Induction of a line dipole

The induction caused by a magnetic dipole with the dipole moment m can be calculated for the tree-
dimensional case by [12]

B(r) =
µ0

4π

3r(m · r)− |r|2m

|r|5
. (8)

For the plane model, a magnetic dipole per length m̄ is defined. In Figure 5 two such line dipoles, representing
the two rings, are pictured. For the plane case, an equivalent formulation to (8) can be found, describing

m̄1

m̄2r̄12

x

y

z

(xz)

Figure 5: Two line dipoles in the (xz) –
plane

the in plane induction B̄ caused by the line dipole m̄ at distance r̄.

B̄(r̄) =
µ0

2π

2r̄(m̄ · r̄)− |̄r|
2
m̄

|̄r|
4 (9)
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Thereby all vectors labeled by a bar (̄·) are defined in the (xz) - plane.

r̄ =

(

x
z

)

, m̄ =

(

mx

mz

)

, B̄ =

(

Bx

Bz

)

(10)

2.3.2 Force of a line dipole in an external B– field

Based on the spatial equation for the force exerted on a magnetic dipole by an external induction field [12]
F = ∇(m ·B) again a two dimensional formulation can be written

F̄ = ∇̄(m̄ · B̄) , (11)

where ∇̄ is the gradient in the x − z plane. Looking at Figure 5, with (11) the force acting on line dipole
m̄2 within the magnetic field caused by m̄1 could be calculated.

2.3.3 Interaction energy of two line dipoles

The energy of a magnetic dipole within an external B- field can be gained for the three dimensional case
from U = −

∫

F dr = −
∫

∇(m ·B) dr = −m ·B. The equivalent formulation in two dimensions is thus

Ū = −m̄ · B̄ . (12)

The interaction energy between a dipole m̄1 and a second one m̄2 can now be calculated by evaluating the
induction caused by m̄1 at the place of m̄2 via (9) multiplied by m̄2.

Ū = −m̄2 · B̄1(r̄12) = −
µ0

2π

(

2(m̄2 · r̄12)(m̄1 · r̄12)

|̄r12|4
−

m̄1 · m̄2

|̄r12|2

)

(13)

2.3.4 Stiffness calculation based on the interaction energy of line dipoles under consideration

of real cross section dimensions

The previous derivation of the interaction energy is related to elementary dipoles. But if real magnets with
e.g. rectangular cross section are represented as single dipoles, the distance between the two magnets has
to be at least larger than the cross section dimensions to get a feasible result. This was assumed in [9] but
is clearly not suitable for the calculation of well designed passive magnetic bearings, where a high stiffness
value is strongly related to a small air gap dimension.

To overcome this problem, a magnet can be seen as a sum of small elementary dipoles dm and the
interaction between each dipole of both magnets is calculated and summed up to get the total energy.
Shrinking the discretization size toward zero, the density of the magnetic dipole moment, the magnetization
M defined via dm = M dV or for the planar problem

dm̄ = M̄ dA , (14)

can be introduced. The result gained by this method is also valid for small air gap dimensions. The total
interaction energy per length of two permanent magnets as pictured in Figure 6 can thus be calculated from
(13) using (14).

Ū = −
µ0

2π

∫∫

A1A2

(

2(M̄2(r̄2) · r̄12)(M̄1(r̄1) · r̄12)

r̄412
−

M̄1(r̄1) · M̄2(r̄2)

r̄212

)

dA2 dA1 (15)

Equation (15) can now be used for arbitrary configurations with appropriate parametrization of M̄1 and
M̄2. The acting forces can be calculated by

F̄ = −∇̄0Ū (16)
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a1

b1

x̄1

z̄1

M̄1
dA1

a2

b2

x̄2

z̄2

M̄2
dA2

r̄12
r̄1

r̄2

r̄0

r̄12 = −r̄1 + r̄0 + r̄2

Figure 6: Cross sections of two mag-
netic rings with arbitrary magnetiza-
tion functions M̄i(ri) , i ∈ {1, 2}

where ∇̄0 is the derivation with respect to r̄0, compare Figure 6. With the general definition of the stiffness
kx = −∂Fx/∂x it follows that

k̄i = −
∂F̄i

∂r̄0,i
=

∂2Ū

∂r̄20,i
, i ∈ {x, z} . (17)

For various parametrizations of M̄(r̄) analytical solutions for k̄ can be calculated. Finally, the total stiffness
of the annular device can be calculated using (5) and (6).

One assumption that was used all the time during the derivation of the stiffness value was, that the
relative permeability µr = 1 for the magnet and all elements in the bearings vicinity. This is widely true
for sintered NdFeB or SmCo magnets but might be a source of error when using ferrite magnets or polymer
bonded magnets in general.

2.3.5 Stiffness per magnet volume

As can be seen from (5) and (6) the total ring stiffness is linearly proportional to the mean air gap radius
rh. As it is the goal to optimize the stiffness per magnet volume ratio, it is obvious that rh cancels out when
dividing by the rings volume, and the stiffness per length per magnet cross section area remains. To get
rid of the influence of the remanence strength of the magnet on the optimization parameter, the reference
pressure

σref =
B2

r

2µ0
(18)

is introduced and finally making the whole expression dimensionless leads to

k̄Ar = k̄r
h2

A · σref

. (19)

The optimization parameter (19) is similar to the dimensionless parameter defined in [1] for the exact case
considering the annular shape. With equal cross section dimensions for both rings the magnet area is defined
as A = 2ab for single ring bearings or A = 2abn for stacked bearings with stacking number n, see Figure 9.

Clearly, k̄Ar is not a stiffness per volume quantity, but represents a parameter which is proportional to
the stiffness per magnet volume. Thus, the goal will be to maximize the normalized parameter k̄Ar .
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3 From a single ring bearing to continuous rotating magnetization

All results presented in this section are derived by proper evaluation of (15) and (17). To show the possible
improvement of stiffness to magnet volume ratio the known results concerning single ring bearings and multi
ring bearings with alternating magnetization, [1], are recalculated using (19).

3.1 Single ring bearings

For single ring bearings as pictured in Figure 7 the stiffness per length evaluates to

Figure 7: Homogeneous magnetization with arbi-
trary magnetization directions α1 and α2.

a1

b1

x̄1

z̄1

M1

α1

a2

b2

x̄2

z̄2

M2

α2

h

k̄r =
B2

r

2µ0π
cos(α1 + α2) ·

[

2 ln

(

(b+ h)2

a2 + (b + h)2

)

+ ln

(

(a2 + h2)(a2 + (2b+ h)2)

h2(2b+ h)2

)]

, (20)

whereby

M̄i = Mi

[

sinαi

cosαi

]

, i ∈ {1, 2} (21)

and

a1 = a2 = a , b1 = b2 = b , z0 = 0 , M1 = M2 =
Br

µ0
(22)

was used. z0 describes the displacement between the two magnets in z̄ direction, i.e. the z component of the
r̄0 vector of Figure 6.

Based on (20) some interesting facts should be mentioned. What is only valid for z0 = 0 is, that the
stiffness is maximal when α1 = −α2. That k̄r is invariant against the sum α1+α2 holds true also for z0 6= 0.
At last, a very interesting aspect of (20) is, that scaling all geometric parameters by a factor L,

(a, b, h) → (L · a, L · b, L · h) (23)

has no influence on k̄r, since L cancels out in the ln(·) terms. Thus, the optimal geometry can be described as
function of the two already introduced parameters a/h and b/h. Optimizing for the dimensionless parameter

(19) using (25) leads to a distinct maximum value of ˆ̄kAr = 0.05893 at a = 1.01757 · h and b = 0.669685 · h.
The optimization was done with the computer algebra program Mathematica©.

The sensitivity of the optimal parameters of a single ring bearing is shown in Figure 8. The dashed and
dash-dotted lines denote the optimal b/h or a/h for given a/h or b/h respectively.

3.2 Standard stacking

With a generalized stiffness of a single ring bearing, similar to (20) but with arbitrary axial displacement of
the two rings z0,

k̄r(z0, αΣ) , αΣ = α1 + α2

8
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Figure 8: Normalized radial stiffness

with respect to ˆ̄kAr of a repulsive type
single ring bearing and the dimension-
less parameters a/h and b/h in %

the total stiffness of standard stacked multi ring bearings as pictured in Figure 9 can be calculated using

k̄nr = n · k̄r(0, 0) +

n−1
∑

i=1

2 · (n− i) · k̄r(i · a,−i · π) . (24)

The already mentioned invariance of k̄r with respect to αΣ is extensively used in (24). To calculate the

Figure 9: Stacked structure with alternating mag-
netization and n = 3.

normalized parameter k̄Ar , (24) is used for the parameter k̄r in (19). As can be seen from Table 1, k̄Ar can
be improved up to 50% when using stacked structures in stead of single ring bearing configurations. A vivid
explanation for this improvement is given by equation (24). The difference between n single ring bearings
and a stacked structure is the sum- term, which represents the coupling between e.g. the first outer ring
with the second inner ring and so on. The improvement values of Table 1, i.e its last column entries, are in
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exact agreement with [13]. The sensitivity of a stacked bearing with five rings is shown in Figure 10.
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1 1.018 0.670 0.05893 –
2 1.296 0.652 0.07793 32.3
3 1.447 0.643 0.08096 37.4
4 1.497 0.641 0.08300 40.8
5 1.522 0.640 0.08443 43.3
10 1.571 0.637 0.08734 48.2
20 1.592 0.637 0.08887 50.8

Table 1: Normalized, dimensionless radial stiff-
ness for repulsive configurations with different
numbers of stacked rings
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Figure 10: Normalized radial stiffness with re-

spect to ˆ̄kAr for n=5 of a repulsive type stacked
bearing as function of a/h and b/h in %.

3.3 Halbach stacking

If now the magnetization is rotated by ∆α = π/2, instead of ∆α = π as done for standard stacking, we get
a “rotating magnetization”, as Yonnet called it [2]. Such a configuration is shown in Figure 11 and is often
referred to as Halbach stacking or Halbach array [14]. Similar to (24) an equation for the total stiffness can
be stated

k̄nr = n · k̄r(0, 0) +

n−1
∑

i=1

2 · (n− i) · k̄r(i · a,−i ·
π

2
) . (25)

To compare a Halbach array configuration with a standard stacked configuration the number of poles p is

Figure 11: Stacked structure
with rotating magnetization
and n = 6, p = 3.

introduced. Looking at the field progression of the named configurations, Figure 12, it can be seen that for
standard stacked bearings the number of poles is equal to the stacking number, p = nStrd., whereas for a
Halbach configuration with ∆α = π/2 the number of poles which are formed are only half the number of
stacked rings, p = nHlb./2. The general relation between pole count, stacking number, a newly defined pole
length l and rotation angle ∆α is

p = n ·
∆α

π
, l =

π

∆α
· a . (26)

The result of the optimization is shown in Table 2, whereby (25) is used in (19) to get k̄Ar . Compared to
the results for the standard stacking, Table 1, Table 2 is based on the number of poles p. But even when
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∆α = π ∆α = π/2

Figure 12: Field generated
by one stacked ring, e.g. in-
ner ring, with alternating
(left) and rotating (right)
magnetization and n = 4.

comparing same number of rings, the possible improvement for e.g. nStrd. = nHlb. = 2 is 26%. The reason
therefore is an even better coupling of e.g. first inner ring with second outer ring and so on, represented by
the sum term of (25). Also note, that in column three of Table 2 the dimensionless polelength l/h instead of
the dimensionless magnet heigth is given. As the pole length is twice the magnet heigth for this special case
of ∆α = π/2, the desired magnet height a of each single ring is even smaller then for the standard stacked
configuration. The sensitifity of a design with five poles is shown in Figure 13.
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1 2 1.686 0.661 0.09805 – 66.4
2 4 1.552 0.646 0.13841 41.2 77.6
3 6 1.562 0.639 0.15216 55.2 87.9
4 8 1.566 0.636 0.15870 61.9 91.2
5 10 1.566 0.634 0.16274 66.0 92.8
10 20 1.570 0.631 0.17072 74.1 95.5
20 40 1.570 0.630 0.17473 78.2 96.6

Table 2: Normalized, dimensionless radial stiffness for re-
pulsive configurations with different numbers of Halbach
stacked rings. Comparison to standard stacking relies on
same number of poles!
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Figure 13: Normalized radial stiffness with re-

spect to ˆ̄kAr (n=10, p=5) of a repulsive type
Halbach stacked bearing as function of the di-
mensionless parameters l/h and b/h in %.

3.4 Continuous rotating magnetization

The question is, what can be achieved when refining the rotation steps of the magnetization more and more,
getting a continuous rotation as pictured in Figure 14? Therefore, the magnetization can be parameterized
as follows:

M̄1(z1) = M1

[

sin
(

π z̄1
l

)

cos
(

π z̄1
l

)

]

M̄2(z2) = M2

[

− sin
(

π z̄2
l

)

cos
(

π z̄2
l

)

] (27)
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In (27) the index (·)1 denotes a parameter of the inner ring and (·)2 one of the outer ring. Using (27)

Figure 14: continuous rotating
magnetization with p = 3.

l

when evaluating (15), an analytical expression for k̄r can be found, nevertheless it is too long to be presented
herein. With the parametrization (27) the resulting number of poles of k̄r depends on the defined pole length
l and the total magnet height, i.e. the integration limit in the z̄ direction of (15).

The result of the optimization for best stiffness per magnet volume ratio is shown in Table 3 based on
the number of poles. The sensitivity for p=1 and p=5 is shown in Figure 15.

Table 3: Normalized, dimen-
sionless radial stiffness for
repulsive configurations with
continuous Halbach magneti-
zation and different numbers
of poles.
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1 1.953 0.658 0.13062 – 33.2 121
2 1.644 0.647 0.17253 32.1 24.6 121
3 1.609 0.639 0.18878 44.5 24.1 133
4 1.598 0.636 0.19659 50.5 23.9 136
5 1.591 0.635 0.20139 54.2 23.7 138
10 1.580 0.631 0.21091 61.5 23.5 141
20 1.575 0.630 0.21569 65.1 23.4 142

3.5 Final comparison

To compare all configurations against each other, for standard stacking, Halbach stacking and for continuous
Halbach magnetization the maximal value for the normalized stiffness per length is visualized in Figure 16.

4 Conclusion and Outlook

The presented investigations show, that between an optimized single ring bearing with homogeneous magne-
tization and an optimized contiguous Halbach magnetized system with several poles the stiffness per magnet
volume ratio can be improved by a factor of about four, or in terms of business, the costs could be reduced
to a quarter. Of course, this statement is more from a theoretical point of view, because it often might be
hard to realize the optimal geometries. Nevertheless, by means of the given tables and figures, a system as
close as possible to the optimal design can be achieved.

Another aspect that might be investigated more in detail concerns the magnetization procedure of magnets
with continuous Halbach magnetization.
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Figure 15: Normalized radial stiffness with respect to ˆ̄kAr of a repulsive type bearing with contiuous Halbach
magnetization as function of the dimensionless parameters l/h and b/h in %.
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Figure 16: Comparison of
the maximal normalized
radial stiffness per length
ˆ̄kAr as function of the num-
ber of poles p

Even if all calculations where done for repulsive type bearings, all results can be transfered to attractive
type configurations based on the full equivalence correlation

k̄r,rep = f(a, b, h, z0, α1, α2) ⇔ k̄r,att = f(b, a, h, x0, α1,−α2)

and the error considerations presented in the paper.
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