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Abstract: Lately higher speed and higher power drive technology is more demanding in many industrial application such as
several kinds of turbo machinery ex. compressor, expander and generator relating to various kind of gas processing. Active
magnetic bearing should be a one of potential device to support such high power density rotor. On the other hands, high
power density will induce several technical problems.
One of these technical problems is thermal problem. Hence the rotor supported by active magnetic bearing can only dissipate
generated heat by means of convection and radiation (no conduction), elongation of the rotor may cause serious change in
mechanical air gap, especially axial air gap between rotor and touch down bearings shall be carefully considered.
For handling this problem, thermal analysis of entire machine is needed.[1] The mathematical model of entire machine shall
be consisting of rotor and all of non-rotating components such as active magnetic bearing’s actuator, motor stator, housing and
cooling jacket. Further more it is better to simulate transient thermal behavior of each machine components, author has
developed Matlab/simlink based simulation tool for this purpose.

1. THERMALSIMULATION
To design active magnetic bearings actuator, it is very much important to check the operation

temperature of such actuator under given environment temperature, environment gas, and cooling
condition. Normally such operational temperature is limited by insulation temperature of coil windings.

1. 1 THERMALSIMULATION by simulink
Authors constructed block diagram of thermal system which can be expressed by fundamental

components of thermal capacitance, thermal transfer block consisting of conductance, convection and
radiation. With this system, the system has in-coming heat as system input and temperature as system
output. It is interesting to compare above mentioned thermal system model to mechanical system as
well as electrical system.

Fig.1 shows system parameter comparison between above mentioned thermal system, mechanical
system and electrical system.

It is also remarkable that proposed thermal system does not have a component corresponding to
spring in mechanical system or capacitance in electrical system.
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Fig.1 system parameter comparison
mechanical system, electrical system. and thermal

The Twelfth International Symposium on Magnetic Bearings (ISMB 12)
Wuhan, China, August 22-25, 2010

mailto:ueyama@mutecs.co.jp
mailto:taniguchi@mutecs.co.jp


III

1. 2 Basic behavior of simulink thermal system
Based on the proposed thermal system, temperature behavior of the given thermal capacitance and

given thermal conductance with step response heat energy input was simulated. The simulink model of
such fundamental system is shown in Fig.2 and temperature behavior is shown in Fig.3.

Fig.2 simulink thermal system model Fig.3 Temperature behavior Fig.2

Hence this fundamental system has heat energy input and temperature as its out put, system can be
connected to describe a larger and complicated system.

Fig.4 shows simulink model of 2 blocks and Fig.5 shows its temperature behavior in case of heat
energy input in one block.

Fig.4 simulink 2 thermal block model Fig.5 Temperature behavior of Fig.4

In this system description, cooling can be taken into account by setting negative heat energy input to
the system block. It is also possible to set radiation as well as convection into this system model.
To verify proposed simulink thermal model, very simple naked coil was simulated. The measured
temperature behavior of bear coil with coil current of 1[A] and corresponding simulation result are
shown in Fig.6 and Fig.7
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Fig.6 Measured coil temperature Fig.7 Simulated coil temperature

Judging from the comparison of measured and simulated data, since temperature rise behavior
depending on time is quite accurate, thermal capacitance; convection and radiation for the coil are well
estimated in this simulink model.

1. 2 THERMALSIMULATION of AMB actuator
In case of simulation of electro-magnets temperature behavior, it is at least needed to establish coil

and stator core mathematical thermal model.

1. 2. 1 THERMALSIMULATION of axialAMB
Thermal model of Axial AMB actuator can be obtained by adding iron core block onto above

mentioned coil model, even it is possible to enhance the model by adding casing structure around axial
AMB or adding epoxy molded effect in the model.
Fig.8 and 9 shows basic thermal model structure of axial AMB and Fig.10 shows measuring set up.

Fig.8 simulink model of AxAMB Fig9 Thermal model of AxialAMB
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Fig.10 Temperature mesument of AxAMB

Fig 11 shows measured data of AxAMB without epoxy molding of the coil and Fig.12 shows
simulated data.
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Fig 11 measured data of AxAMB without
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The temperature behavior of the coil inside of iron core is slightly slowly increased if compare to the
naked coil.This difference is given by higher heat conductance area in bottom side of coil, outer side of
coil and inner side of coil. due to contact between coil and iron core ( on the other hand, radiation of
corresponding area is reduced) Fig 13 shows measured data of AxAMB with epoxy molding of the
coil and Fig.14 shows simulated data.

In case of coil is molded by epoxy, thermal capacitance of coil is increased and therefore
temperature of the coil is more slowly increased. The thermal transfer capability is also increased due
to more dense condition temperature difference between coil and core is also decreased.In other words,
epoxy molding helps to avoid thermal shock of the coil very much.

1. 2. 2 THERMALSIMULATION of radial AMB
Thermal model of radial AMB actuator can be also established in same manner by using thermal

network in Fig.15

Fig15 Thermal model ofAxialAMB Fig16 Thermal model of Axial AMB

Fig 16 shows measured data of RadAMB without epoxy molding of the coil and Fig.18 shows
simulated data

Fig 19 shows measured data of RadAMB without epoxy molding of the coil and Fig.20 shows
simulated data. It is remarkable that in case of radial AMB with epoxy. Hence more epoxy volume is
available compared to axial AMB, increasing of thermal capacitance is bigger, temperature of the coil
is showing smaller temperature difference to the iron part. Authors also separately developed similar
simulink model for motor stator.
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Fig 17 measured data of RadAMB without
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thermal conductivity of convection shall be considered. Thermal conductivity of radiation can be
considered as independent to rotation speed shown in Fig 20, but on the other hand , convection is
surely increasing depend on rotational speed.
The heat energy convective transfer from surface of the shaft to environment air is given by following
equation.

J =α（Ts – Ta ） ---- eq 1

h ere J : Heat energy transfer
α: Thermal conductivity of convection
Ts : Temperature of the shaft
Ta : Temperature of environment gas

Then in case of rotating shaft, thermal conductivity of convection can be also given by following
equation.

α＝3.26 x ( Ts- Ta )0.25 x {(Ｖｗ + 0.348 ) /0.348 }0.5 ----- eq 2

Here Ｖｗ : relative surface speed. [m/sec]

Hence shaft is rotating; shaft surface speed can be taken as relative surface speed.Vw. Then thermal
conductivity of convection α is getting larger and contribute more effective heat dissipation compared
to stand-still shaft.

Fig.22 shows thermal conductivity of convection depending on shaft surface speed

2.2 THERMALSIMULATION of entire machine
The final goal of this thermal analysis tool is to simulate entire rotating machine supported by active

magnetic bearings. Fig23 shows thermal net work of entire rotating machine
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Fig 22 Thermal conductivity of convection

depending on shaft surface speed

Fig 21 Thermal conductivity of radiation
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As discussed former section, simulink based thermal model of axial AMB, radial AMB, motor stator,
rotating shaft has already realized. It is very much straight forward idea to include casing component
into these models and combined to establish entire AMB rotating machine. As also discussed, cooling
effect such like cooling jacket can be included with negative heat input to the system.
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indage losses and thermal convection on the shaft as well as inner surface of stator
g, it is possible to simulate for vacuum condition.
ffect of axial gas flow or effect of forced cooling gas input are not modeled yet. For
, additional thermal transfer block shall be needed.
are some example of temperature rise of time history. In these figure several point
ring supported rotor along axial direction are indicated.

Fig.23 thermal net work of entire rotating machine
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Fig.24 Simulink block diagram of entire rotating machine



3 Summ
1. Simu
transient
2. Same
speed de
3. By ad
machine
4. Takin
5. The p
between
6. Cooli
block.
7. At thi
talking t
8. effect
effects, a

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200
Thermal analisys Shaft

T
e
m

p
[d

e
g

]

Time [sec]

Temp ambi. = 20 [deg]

Cooling P = 200 [W]

System P = 210 [W]

Shaft Mass = 1.284 [Kg]

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200
Thermal analisys Shaft

T
e
m

p
[d

e
g

]

Time [sec]

Temp ambi. = 20 [deg]

Cooling P = 400 [W]

System P = 620 [W]

Shaft Mass = 19.5012 [Kg]

The Twelfth International Symposium on Magnetic Bearings (ISMB 12)
Wuhan, China, August 22-25, 2010
Fig 25 simulated data of 100,000 rpm
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