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Abstract: Magnetic bearing technology is one of the most promising future technologies in the area of electrical drive
systems. Due to the contact-free rotor suspension numerous advantages arise. The utilization of passive magnetic
bearings is a very effective way of realizing magnetic levitation. Thereby, systems with a minimal constructive
complexity can be obtained. However, such constructions have a main drawback: the damping of the passively
stabilized degrees of freedom is negligibly small. External excitations or resonant vibrations may cause considerable
damage to the bearing system. This study describes an effective way to damp vibrations by means of viscoelastic
elements. The mathematical formulation of the overall dynamic system is derived and the analytic results are verified
by measurements.
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Introduction

Thanks to the steady improvement of power electronic components, digital signal processing and
sensor technologies, the field of magnetic levitation is a contemporary issue with high potential. But
at the time, a rapid spreading of magnetic bearing systems and bearingless drives is slowed down
mainly by their relatively high complexity and – as a consequence – their high costs. The great
expenses mainly arise from the actively stabilized degrees of freedom (DOFs) where signal
processing, power electronics, sensors and actuators are needed. To avoid some of this effort
passive permanent magnetic bearings can be used. In this manner, bearing systems with only one
actively controlled degree of freedom can be realized. The main drawback of passively stabilized
DOFs is their lack of damping. Only the viscosity of the surrounding medium or eddy currents may
lead to damping effects. Unfortunately, these are negligibly small in most cases. One way to
overcome this problem is to introduce additional active damping elements in order to control the
vibrations. In that case, however, the benefits of the passive stabilization are widely eliminated by
the efforts necessary to realize the active damping elements. Furthermore, passive damping
concepts utilizing eddy currents have been investigated by the scientific community. However,
eddy current dampers often need elaborate mechanic constructions with yet moderate damping
capabilities, especially at low rotational speeds. The approach followed in the course of this paper
deals with the utilization of passive damping elements made of viscoelastic materials. Main
advantages of such damping devices are the high adaptability to the magnetic bearing system, their
big damping ratios and the possibility to realize as simple structures such as rings with rectangular
or circular cross section. Therefore, magnetic bearing systems with high robustness but very low
mechanical complexity and therefore low costs can be realized.

The Investigated System

The investigated magnetic bearing concept is shown in Fig. 1. It consists of a cylindric rotor which
is stabilized by two passive permanent magnetic radial bearings, placed with a certain axial distance
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to each other. Thereby the radial and the tilt displacementsof the rotor are stabilized passively. In
axial direction the rotor position is controlled by an active magnetic bearing (AMB). A motor unit
is arranged between the passive radial bearings.
Since the damping of the passively stabilized DOFs is almostnegligible such a system is instable
against external disturbances. To overcome this problem the whole system, i.e. the stator, is mounted
to the fixed housing by means of viscoelastic elements.

The Dynamic Behavior: In order to describe the dynamic behavior of this system some
assumptions are made. First, no acceleration or deceleration of the rotor is applied, thus the dynamics
is studied at stationary operation points with constant angular speedΩ. Second, the active axial
bearing is presumed to be ideal, i.e. the relative axial position of the rotor to the stator is kept
constant. If no excitation in axial direction is applied, this assumption is valid and this in turn
means that also the axial position of the viscoelastic mounted stator is constant. For the case of an
external axial excitation Jungmayr has investigated the influence of additional damping elements
on the behavior of the closed loop control system in axial direction [1].
Considering the excitation of forced vibrations, two effects can be observed. The first one is mass
unbalance, occurring when the rotor’s principal axis of inertia does not coincide with the geometric
axis of the rotor. The second effect is an eccentricity of themagnetic axis relative to the geometric
axis of the bearing system. The magnetic axis is always defined by the radial rotor position, where
the sum of the magnetic forces is zero. Therefore, it is not fixed but moves along an orbit as
the rotational angleϕ changes (considering low rotational speed). Reasons for aneccentricity of
the magnetic axis are inhomogeneous magnetization along the circumference as well as geometric
positioning or fabrication tolerances. As shown in [2], both effects lead to resonance effects at the
same rotational speed. Since unbalance forces act in radialdirection and small inclinations of the
rotor are assumed, only a negligible part of the described excitation affects the axial dynamics.
Thus, the forced vibrations only concern the radial and tiltDOFs and the assumption of neglecting
axial excitation is valid.
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Fig. 1. Principle illustration of the investigated system
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Fig. 2. Schematic figure of the overall dynamic model

The resulting model is pictured in Fig. 2. The viscoelastic elements are represented by the spring
– damper combinations for translational and tilting movements with frequency dependent stiffness
(sve(ω), sϕ,ve(ω)) and damping values (dve(ω), dϕ,ve(ω)). The passive magnetic bearings are modeled
as linear springs and are designated by theMB subscript.
To describe the dynamic behavior of this system eight DOFs remain, combined in the vector
of generalized coordinatesq = [xS, yS, αS, βS, xR, yR, αR, βR]

T . TherebyαS and βS are the first
two cardan angles [3] describing the transformation between an inertial coordinate system and
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the stator-fixed coordinate system. Further,αR and βR are the first two cardan angles describing
the transformation between the stator-fixed and the rotor-fixed coordinate system. The statesxS

and yS describe the translational displacement of the stator represented in the inertial frame. The
coordinatesxR and yR denote therelative movement between the stator and the rotor and are
defined in the stator-fixed system.

Mathematical Formulation: The equations of motion of the previously introduced dynamic
system are derived by an energy based method following the Lagrange–II formalism (1).

d

dt

(
∂

∂q̇
T (q, q̇)

)

−
∂

∂q
T (q, q̇) +

∂

∂q
V (q) = QT

NK (q, q̇, t) (1)

ThereinT, V andQNK denote the system’s kinetic energy, potential energy and the vector of the
generalized non-conservative forces, respectively [3].
With the assumption of small stator and rotor movements the nonlinear equations of motion can
be linearized around the position of restq0 = 0T . Furthermore, the rotational symmetry of the
assembly can be used for a transformation into complex states. Thereby the system order can be
reduced by half [4]. The reduced set of generalized complex coordinates is given by

cq = [rS, ϕS
, rR, ϕR

]T with rS,R = xS,R + j · yS,R and ϕ
S,R

= βS,R − j · αS,R . (2)

Hence, the linearized system can be written as

M cq̈ + (D(Ω) +G(Ω)) cq̇+K(Ω) cq = f(Ω, t) , (3)

with the matrices

M . . . Mass matrix; constant
D . . . Damping matrix;Ω–dependent due to viscoelastic material characteristics
G . . . Gyro matrix;Ω–dependent due to gyroscopic effects
K . . . Stiffness matrix;Ω–dependent due to viscoelastic material behavior
f . . . Vector of exciting forces and torques; unbalance forcesare proportional toΩ2 and

the direction moves withΩt in the inertial coordinate system, magnetic tolerances are
modeled by an eccentricity of the force-free position of thesprings which represent the
passive magnetic bearings and also move withΩt in the inertial frame.

As mentioned, magnetic tolerances and mass unbalance can beconsidered in (3). Mass unbalance
is applied in two planes whereby not only static unbalance but also dynamic unbalance phenomena
can be modeled. A magnetic tolerance is considered in each ofthe passive bearings. Withf = B ·u,
B ∈ R

4×4, the input vectoru is

u =







u1 e
jγu,1

u2 e
jγu,2

e1 e
jγe,1

e2 e
jγe,2






· ejΩt (4)

whereu is the unbalance,e the magnetic tolerance andγ the phase angle of each corresponding
disturbance.
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Linear Viscoelasticity
Viscoelasticity describes a combined viscous and elastic material behavior, where the viscous part
is responsible for the damping and the elastic part represents the stiffness of the material. The
properties of such materials are influenced by a lot of quantities as load frequency, temperature,
static pre-load or dynamic strain amplitude. However, frequency and temperature influence are most
significant.
Phenomenologically, viscoelasticity can be explained by aspring-damper combination as illustrated
in Fig. 3.E ′ is called storage modulus andE ′′ loss modulus. The loss factor isη = tan δ = E ′′/E ′.
For an ideal elastic material the phase between strainε(t) and stressσ(t) is δ = 0 rad, whereas
pure viscous behavior shows a phase lag ofδ = π/2. Viscoelastic materials thus have a phase lag
of 0 < δ < π/2.

E′(ω) E′′(ω)

ε(t) = ε0 sin(ωt)
σ(t) = σ0 sin(ωt− δ)

t

σ, ε
ε(t)

Fig. 3. Voigt-Kelvin model withσ andε as functions of time
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Fig. 4. Qualitative master curve of a viscoelastic material

The typical characteristics ofE ′ andη as a function of the frequency and at a certain temperature
Tref are shown in Fig. 4. One can see that the loss factorη has a distinct maximum at the frequency
where the storage modulus rises significantly. The material’s loss per cycle and volume (WL) is
proportional to the loss modulusE ′′ and can be derived from the area enclosed by the hysteresis
of σ andε [5], yielding

WL =

∮

σdε = π ηE ′

︸︷︷︸

E′′

ε20 . (5)

For further references regarding viscoelastic materials and the modeling of appropriate damping
elements see [5]–[7].

Verification of the Linearized System
The viscoelastic stiffness and damping relations are used in the linearized system (3) for the
calculation of the system response. To verify the theoretically established results a laboratory model
was built up.

Measuring Setup: In the measuring setup theabsoluterotor position, i.e. the combined absolute
stator and relative rotor movement, is detected by means of eddy current sensors and an additional
measuring target which is fixed on top of the rotor. The measurement gives no explicit information
about the movement of the stator. Thus, if the excitation shows the general formui = ûi · e

jωt the
measured value is

rabs =

4∑

i=1

Tr,ui
(jω) · ui = r̂abs · e

jωt+δ . (6)

The transfer functionsTr,ui
can not be calculated directly from the linearized model (3)where the

rotor displacement is relative to the stator. To obtain the absolute rotor deflection all states (2) have
to be superposed with the proper phase correlation. For measurements, the viscoelastic damping
material SylomerR© manufactured by Getzner [8] was used.
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Comparison: In order to compare the measurements with the calculations it is crucial to know the
exact excitation acting on the system. Therefore, the rotorwas balanced in a first step. Nevertheless,
displacements due to magnetic tolerances are still present, even if the rotor is perfectly balanced.
The eight parameters of the remaining excitation values (4)were identified from a first measurement
with the balanced rotor. The result of this identification isshown in Fig. 5.
The interesting resonance phenomena at35Hz is caused by the combination of mass unbalance and
magnetic tolerance and is described theoretically in [9].
As can be seen, the measured characteristics of the combinedstator and rotor movements can be
matched very well by the derived model.
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Fig. 5. Measurement results and numerical calculation results
of the absolute rotor displacement where the basic excitation
(mass unbalance and magnetic tolerance) was identified from
the measurements
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Fig. 6. Measurement results and numerical calculation results
with an additional, well defined mass unbalance and stiff case
with only basic unbalance as in Fig. 5

In the next step a defined mass unbalance was mounted on the rotor. In Fig. 6 the calculated and
measured harmonic response is shown. Again, the calculatedvalues are very close to the measured
ones. Especially the resonance frequencies are matched very precisely by the calculation, verifying
the used model. The error around35Hz might be explained by observing the single states of the
dynamic system, pictured in Fig. 7. Note, that at the first resonance frequency all states are in
phase, thus all their movements contribute to the absolute value r̂abs with their full magnitude. At
the same time, the gradients of all phases are very steep. Thus, if a calculated phase has a small
error a significant mistake of the superposed movements willbe the consequence.
Another interesting behavior is, that at the second resonance frequency, around135Hz, the rotor
and stator movements have opposite phase. Thus the stator and the relative rotor movements partly
compensate, leading to smaller values of absolute rotor displacement than at the first resonance
occurrence. However, the movement of the stator and especially the relative movement of the rotor
are much larger than those at35Hz. Around 65Hz the absolute rotor displacement is almost zero
due to the compensation of stator and relative rotor displacements (Fig. 6).
When looking at the phase characteristics in Fig. 7 it has to be mentioned, that the values at0Hz
are the result of the phase positionsγi of the inputsui (see (4) and (6)).
Also shown in Fig. 6 is the case of a missing damping element, i.e. a stiff mounted stator. This
measurement was done withno additional mass unbalance and therefore has to be compared to
the characteristics of Fig. 5, but was drawn in this figure because of the better scaling. The very
narrow and high resonance peak of the measurements with stiff supporting confirm the negligible
damping properties of the basic assembly. Even aside the resonance frequency a robust operation
was hard to obtain, because already minimal disturbances were destabilizing the system.
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Conclusion

This paper shows that the rotor-dynamic behavior of the presented magnetic bearing system —
including viscoelastic damping elements — can be predictedby an analytical model. The correlation
of the numerical calculations and the measurements is proven to be very high. Thus the basis
for further optimizations is given. Even without an optimized design, the measurements have
shown that viscoelastic damping elements are well suited todamp rotor vibrations. Nevertheless,
it is advisable to act with caution when utilizing viscoelastic materials. Some critical aspects of
viscoelastic materials as longtime stability, temperature influence or large strain amplitudes which
are not considered in this paper may have tremendous effectson the rotor-dynamic behavior.
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