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Abstract: In active magnetic bearing (AMB)-rotor system, a method for the multi-frequency periodic vibration
suppressing is proposed by an adaptive structure with the finite-duration impulse response (FIR) filter. To cater
for the requirement of the long duration impulse response filter arisen in the AMB-rotor system, the Fast Block
Least Mean Square (FBLMS) algorithm is adopted to efficiently implement the computation of linear
convolution and linear correlation at a computational cost far less than that of the conventional FIR filter of time
domain. The unique feature of the FBLMS algorithm is characterized by no influence on the computational
complexity, regardless of the number of the vibration frequency components within the range of sampling
frequency. The convergence rate of each frequency component can be adjusted by assigning the individual step
size parameter for each filter weight. Furthermore, each harmonic component of the vibration can be addressed
respectively or together. The experimental results of the reciprocating simulating disturbance test and the rotating
harmonic vibration test show that the proposed adaptive structure with the FBLMS algorithm can achieve the
good effectiveness for suppressing the multi-frequency periodic vibration.

Keywords: AMB, Multi-Frequency Periodic Vibration, FBLMS, Fast Convolution, Fast Correlation,
Overlap-Save

Introduction

In recent years, with the development of the active magnetic bearing (AMB) technology,
more and more attentions have been attracted to the AMB application for its performance
advantage. The AMB can not only provide the contactless supporting for the rotor, but also
apply the real-time active electromagnetic force to suppress the rotor vibration. So far, there
have been a great number of investigations into the use of magnetic bearings to control the
rotor vibration. While most of these have aimed at reducing the rotor unbalance vibration
which only contains a single frequency component[1-6], comparatively, a few have considered
the rotor vibration with the more complex excitations [7-12]. For the practical rotor system, the
multi-frequency periodic vibration is the most common vibration form, especially in the
reciprocating and rotating machinery. The multi-frequency periodic vibration can be regard as
the combination of a set of the multiple harmonic components or some individual simple
harmonic (sinusoidal) components whose frequency is uncorrelated each other. In this study,
the attention would be confined to the periodic vibration with multi-frequency in the
AMB-rotor system.

Nonami et al.[6] achieved the unbalance vibration suppressing by the iterative algorithm
which requires no knowledge about the dynamical property of the AMB system. Moreover,
Nonami et al.[8] and Liu et al.[10] extended the algorithm of vibration suppressing from single
frequency to multi-frequency. Nevertheless, their methods for multi-frequency[8,10] merely
implements the same algorithm of single frequency in some multiple frequencies respectively.
As a direct consequence, the computational complexity will sharply increase in direct
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proportion to the number of the frequencies considered. For a practical rotor system, the rotor
vibration generally contains large numbers of the frequency components. At present, there is
no hardware for signal processing has capability to deal with such great computational load in
real time. Therefore, it is infeasible in the case that the vibration contains a great number of
frequency components.

In this study, a method for the multi-frequency periodic vibration suppressing is
proposed by an adaptive structure with the finite-duration impulse response (FIR) filter. To
deal with the requirement for the adaptive filter with a long duration impulse response arisen
in applications of the AMB rotor system, the Fast Block Least Mean Square (FBLMS)
algorithm is adopted to efficiently implement the computation of linear convolution and linear
correlation in order to considerably reduce the computational complexity. The unique feature
of the FBLMS algorithm is no influence on the computational complexity, regardless of the
number of the vibration frequency components within the range of sampling frequency, it
would have. Moreover, the weights in the FBLMS algorithm have the intuitional relation with
frequency. As a result, each harmonic component of the vibration can be addressed
respectively or together.

1 Adaptive Vibration Suppressing in Time Domain
Considering the common control model of the AMB-rotor system as shown in Fig.1,

( )C s , ( )A s and ( )R s are the transfer functions of the main control, the AMB and the rotor,
respectively. Theoretically, any vibration disturbance can equivalently be regarded as the
direct disturbance force acting on the rotor which denoted by ( )d t . The rotor vibration
response of ( )d t which denoted by ( )dy t can directly be computed in the time domain by the
convolution, whose discrete form shown as follows,

( ) ( ) ( ) ( ) ( )d R R
m

y n d m h n m d n h n




    (1)

where ( )Rh n is the unit impulse response of the rotor system whose transfer function is
( ) 1 ( ) ( ) ( )R s C s A s R s , and * is the symbol for discrete linear convolution.

In order to suppress the rotor vibration, an adaptive structure which consists of an
adaptive filter and its weights adjustment algorithm is presented as showed in Fig. 1. ( )out n
is the discrete control signal generated by the adaptive filter. Likewise, the rotor movement
response of ( )out n , which denoted by ( )outy t , can also be computed in the time domain by the

convolution as follows:

( ) ( ) ( ) ( ) ( )out AR AR
m

y n out m h n m out n h n




    (2)

where ( )ARh n is the unit impulse response of the AMB system whose transfer function is
( ) ( ) 1 ( ) ( ) ( )A s R s C s A s R s .
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Fig.1 the control model of the AMB-rotor system with adaptive structure

The electromagnetic force generated by the AMB, combined with the disturbance force,
leads to the dynamic movement of rotor. Considering ( )outy n is a close match for ( )dy n ,
which means that it has the same magnitude and phase in each frequency component, the

( )dy n would completely be counteracted by the response of the ( )outy n . If the ( )dy n can not
be counteracted by ( )outy n exactly, the residual vibration induced by the control error can be
detected in the rotor displacement signal, which is denoted by ( )errory n as follows:

0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )error d out R ARy n y n y n y n y n d n h n out n h n        (3)

where 0 ( )y n is the displacement signal without vibration disturbance.
According to the certain statistical criterion, which is also said to be the cost function,

the adaptive algorithm adjusts the filter weights to minimize the error between ( )outy n and
( )dy n in a sense of the cost function. When ( ) ( )out dy n y n , the disturbance vibration will be

eliminated. Among the cost functions, the Mean Square Error (MSE) is most popular and
widely used in a variety of applications, because the MSE has the unique global minimum to
lead to tractable mathematics. The MSE of the displacement signal is defined as

2 2MSE [| ( ) 0 | ] [| ( ) | ]error errorE y n E y n    (4)

where for convenience of discussion, the set value of rotor displacement is assumed to be zero.
[ ]E denotes the statistical expectation operator. Because ( )errory n contains the random noise

component, the mean-value of 2| ( ) |errory n can only be computed by the statistical expectation
operation.

When the finite-duration impulse response (FIR) filter is adopted as the adaptive filter in
the adaptive structure, whose internal structure is shown in Fig.2, there are two theorems
listed as follows to explain the theoretic feasibility for the multi-frequency periodic vibration
suppressing. For the limit for the paper length, the proving procedure for these two theorems
will be detailed in the long version of this paper.

Fig.2 FIR adaptive filter structure
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Theorem 1: In the case of steady disturbance, as long as the rotor displacement signal
( )errory n is achieved the minimized MSE by adjusting the filter output signal ( )out n as shown

in Fig.1, the outy will be a close match for dy as more as possible, namely, the rotor vibration
is suppressed optimally.

Theorem 2: In the case of steady disturbance, if the reference input signal which has
correlation with the disturbance is known, it must be existent that a unique optimal solution

optW of the FIR filter weights vector makes the filter to realize the MSE minimization of
( ) ( )d outy n y n .

Because of the requirement for a priori statistics information about the processed data,
the MSE is not suitable for the real-time computation. In practice application, the gradient
vector of the MSE is generally estimated by the instantaneous value of gradient vector which
can be solved by the iterative procedure. The resulting algorithm is widely known as the Least
Mean Square (LMS) algorithm which is by far the most popular adaptive algorithm in
practice. The essence of the LMS has been described in detail in [13,16-18].

2 Fast Block LMS Algorithm

2.1 Requirement of a Long Impulse Response

The aforementioned analysis only explains the theoretic feasibility for vibration
suppressing by the adaptive structure shown in Fig.1. For a practical AMB-rotor system, more
complex factors should be considered. It will take some time form the filter outputting signal
to the rotor response turning into or at least closing to the steady state, which is called the
transient time. So, the FIR filter is required to have the equal long memory time to match it.
The time of impulse response decides the FIR filter’s memory which determined by the
number of filter weights. The requirement of a long memory will significantly increase the
computational complexity. Considering that the transient time is 0.1 s and the control
sampling frequency is 10 kHz, 1000 weights will be required in the FIR filter. It is too
difficult to realize the 4-DOF control algorithm with such complex computation. To deal with
the requirement of a long impulse response, Fast Block LMS (FBLMS) algorithm is adopted
to efficiently implement the computation of linear convolution and linear correlation at a
computational cost far less than that of the conventional LMS algorithm of time domain.
Additional, the FBLMS can adjust the convergence rate of the each individual frequency
component of the signal. Next we will turn to the issue of how to suppress the vibration by
applying the FBLMS algorithm.

2.1 FBLMS Algorithm Process

From digital signal-processing theory[13,18], we know that the overlap-save method
provides an efficient procedure for computation of linear convolution and linear correlation
by using the fast Fourier transform (FFT). Also, although the filter can be implemented with
any amount of overlap, the use of 50 percent overlap is the most efficient. Hence, we focus
our attention on the overlap-save method with 50 percent overlap, in which the block size
equals to the number of filter weights. Fig. 3 shows a signal-flow graph representation of the
fast block LMS (FBLMS) algorithm. This algorithm represents a precise frequency-domain
implementation of the block LMS algorithm in the time domain.
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Considering the FIR filter with N tap weights ( )W k in the time domain, according to the
overlap-save method, the N tap weights of the filter are padded with an equal number of zeros,
and a 2N-point FFT is used for the computation.

( ) [ ( ),0 ... 0]T T
F

N

W k FFT W k
 (25)

where ( )FW k ,which is 2N -by-1 vector, denotes the frequency-domain weight vector and is the
FFT coefficients of the zero-padded, tap-weight vector ( )W k . The subscript F denotes the term
in the frequency domain. [ ]FFT denotes fast Fourier transformation. Note that the
frequency-domain weight vector ( )FW k is twice as long as the time-domain weight vector

( )W k .
The reference input signal sequence ( )x n is sectioned into N-point blocks. The k-th

block is ( ) [ ( ),..., ( 1)]X k x kN x kN N   . Let
( ) { [ ( ),..., ( 1), ( ),..., ( 1)]}

( 1)th block th block

FX k diag FFT x kN N x kN x kN x kN N
k k

    


  (26)

denote a 2N-by-2N diagonal matrix obtained by Fourier transforming two successive blocks
of the reference input signal. Hence, applying the overlap-save method to the linear
convolution of ( )X k block and ( )W k , yields the N-by-1 vector

1( ) [ ( ), ( 1),..., ( 1)] last elements of [ ( ) ( )]T
F FOUT k out kN out kN out kN N N FFT X k W k     (27)

where 1[ ]FFT  denotes inverse fast Fourier transformation. Only the last N elements in Eq.
(27) are retained，due to the first N elements correspond to a circular convolution. Likewise,
the control error signal sequence ( )errory n is also sectioned into N-point blocks

( ) [ ( ),..., ( 1)]error error errorY k y kN y kN N   . Noting that the first N elements are discarded form
output described in Eq. 27), we may transform the control error signal vector into the
frequency domain as follows:


th control error block

( ) [0,...,0, ( ),..., ( 1)]T
error F error error

N k

Y k FFT y kN y kN N  
 (28)

Next, to calculate the N-by-1 gradient vector, the overlap-save method can be applied to
the linear correlation of ( )X k and ( )errorY k as follows

1( ) first elements of { 2 [ ( ) ( )]}F error Fk N FFT X k Y k    (29)

where * is the symbol for conjugate.
So, the frequency-domain weight vector is updated as.

( )

01
( 1) ( )

...2

0

F F

k

W k W k FFT
N zeros



 
 

      
  
  

(30)

where  is the step-size parameter.
The procedure above is the algorithm process of the FBLMS. Finally, let’s consider the

frequency range for vibration suppressing which is dependent on the sampling frequency and
the block size. if the sampling frequency is 10 kHz and the block size is defined as 1024N  ,
the frequency range of vibration suppressing will be from 10 Hz to 5 kHz.

In either the FBLMS algorithm or the conventional LMS algorithm, it is a important
problem that the stability margin and the convergence rate of the different frequency
component may be highly disparate in multi-frequency signal processing. The FBLMS
algorithm is not only responsible for reducing the computational complexity, but also can
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make all frequency components converge at the same rate by assigning the different  to
each weight. Contrastively, the weights in the conventional LMS algorithm have not the
intuitional relation with frequency.
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2N-point
FFT-1

Conjugate
Insert N zeros
before block

Z-1

2N-point
FFT

Save last N
elements

Last N elements
are set to 0

2N-point
FFT-1

2N-point
FFT

×
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Fig.3 FBLMS algorithm applied in AMB

2.2 Choose of Reference Signal

According to Fig.1, the adaptive filter needs a reference input signal ( )x n which must have
correlation with a disturbance ( )d n . Here, the correlation between two signals means that two
signals can be transformed each other by the certain unknown mapping relation. The adaptive
filter will realize this mapping relation by adjusting the weights, so that the amplitude and
phase of reference signal will match the disturbance vibration in each frequency component.

If the disturbance is measurable, the signal from disturbance measuring can directly be
act as the reference signal. However, it is not easy to measure the disturbance in the most case.
In this study, we choose the signal that composes of some sinusoids with the unit amplitude
and zero phase, whose frequency is respectively equal to that of each disturbance component.
In this way, the frequency distribution of disturbance must be known in advance and the
objects of vibration suppressing are limited in periodic vibration.

2.3 Computational Complexity

The computational complexity of the FBLMS algorithm operating in the frequency
domain is now compared with that of conventional LMS in the time domain. The comparison
is based on a count of the total number of multiplications involved in each of these two
implementations for generating the same block size N of control output ( )out n . Although in
an actual implementation, there are other factors to be considered (e.g. the consumption of
additions and storage requirements), the use of multiplications provides a reasonable basis for
comparing the computational complexity[13].

According to the references [13,18], for the FIR filter with N tap weights, the ratio of
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computational complexity for the FBLMS to the conventional LMS is

2 2
2

FBLMS multiplications 10 log 10 16 5log 13

conventional LMS multiplications 2

N N N N N
N N
  

  (31)

When 32N  , from Eq. (31), the computational complexities of two algorithms are similar. The
more the tap weights of the filter are, the more efficient the FBLMS algorithm will be. For
example, for 1024N  , the FBLMS algorithm is roughly 15 times faster than the conventional
LMS in computational terms.

3 Experimental results

3.1 AMB Rotor Test Rig

To confirm the effectiveness of the above algorithm, experiments were carried out on an
AMB test rig with a vertical shaft shown in Fig. 4. The vertical shaft is supported by two
radial AMBs. A coaxial brushless permanent magnetic motor is located between two radial
AMBs. The axial support for the rotor is provided by a permanent magnetic bearing. The
main parameters of the AMB-rotor system: the rotor weight including the flywheel 25.8m kg ;
the gap of back-up bearing 0.15x mm ; the maximum rotating speed in experiment is 18000rpm
(300Hz); The experiments were performed on d-SPACE DS 1103 with a sampling frequency
of 10 kHz.

Fig.4 AMB test rig with vertical shaft
Firstly, the magnitude-frequency characteristic of the AMB-rotor system is measured as

shown in Fig. 5. It is obviously that there are two vibration peaks approximately located in
14Hz and 25Hz within the range from 0 Hz to 200 Hz. Because the rotor is rigid, the
frequencies of two peaks should be the first two rigid body critical frequencies of the rotor
supported on the active magnetic bearings. Otherwise, above 100Hz, the values of the
magnitude-frequency characteristic closes to zero. It means that the disturbance above 100 Hz
would hardly excite the great vibration magnitude, unless the disturbance has a high energy
level above 100 Hz.
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Fig.5 The magnitude-frequency characteristic of the AMB rotor system

3.2 Reciprocating Test for Simulating Disturbance

While the rotor is not rotating, a multi-frequency reciprocating vibration of rotor is
excited by a simulating disturbance signal which is injected into the amplifier’s input in the
channel of the X-direction of the upper radial AMB. The disturbance signal consists of six
sinusoidal components with same amplitude and different phase, which are 14 Hz, 25 Hz, 50
Hz, 75 Hz, 100 Hz, 125 Hz, respectively. Likewise, we choose the same six frequency
components with the unit amplitude and zero phase as the reference input signal. In this
experiment, the block size of FBLMS algorithm is chosen as 2 2048N  . So the frequency
range of vibration suppressing will be from 10 Hz to 5 kHz.

Fig. 6 shows the displacement sensor signal of the X-direction of the upper radial AMB in
the time domain and its power spectrum distribution in the frequency domain without
vibration suppressing. It is note that the displacement signal fluctuates in the time domain and
there are six peaks in power spectrum which exactly correspond with the six disturbance
components’ frequency. Although the amplitudes of six frequency components in disturbance
exciting are equal, their responses are different whose magnitudes are consistent with the test
results shown in Fig. 5. The peak in 125 Hz can hardly be distinguished in the system noise.

With multi-frequency vibration suppressing, as shown in Fig 7, it is clear that the
displacement signal fluctuation is significantly diminished. The original six peaks of
disturbance in power spectrum are completely vanished in noise, which proves that
multi-frequency vibration suppressing of the rotor is very effective.
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Fig.6 Displacement signal and power spectrum distribution without vibration suppressing

Fig.7 Displacement signal and power spectrum distribution with vibration suppressing
In experiments, the process that six peaks are gradually collapsed one by one can be

clearly observed. The convergence rates of different frequency peaks are different, moreover,
are possibly divergent in some frequency. Fortunately, the convergence properties of each
frequency can be adjusted conveniently by assigning an individual i to the corresponding
weight in the FBLMS.

3.3 Rotating Test

In the AMB test rig, the rotor is driven by a coaxial brushless permanent magnetic motor
with 4 poles. It is found that the permanent magnetic motor in normal operation would
generate a radial disturbance force whose frequency is multiple of the rotating frequency. Fig.
8(a) shows the vibration power spectrum of X-direction in the upper AMB at a given steady
rotational speed of 1500 rpm (25 Hz). Besides the rotor unbalance vibration of 25 Hz, it can
be observed that many high harmonic frequencies exist in the vibration. Among the high
harmonic frequencies, the second and the fourth harmonic frequencies are extremely
outstanding and the third one is comparatively a little weak. Other higher harmonic
frequencies are inconspicuous in Fig. 8(a). As a result, the rotor rotating orbit is not in a circle
as shown in Fig. 8(b) because of the many high harmonic frequencies existing.

In this test, to suffice for the computational complexity of 4 DOF, the block size of the
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FBLMS algorithm is reduce to 2 1024N  . So, the frequency range of vibration suppressing
will be from 20 Hz to 5 kHz.

In the FBLMS algorithm, each frequency component of disturbance vibration can be
addressed respectively by reconfiguring the frequency components of the reference input
signal. In this test, the reference input signal is configured to contain 50 Hz, 75 Hz, 100 Hz
and does not include 25 Hz. When the vibration suppressing is activated, the vibration power
spectrum of X-direction in the upper AMB at a given steady rotational speed of 1500 rpm (25
Hz) is shown in Fig. 9(a). It is shown that the vibrations of the high harmonic frequencies are
suppressed and the fundamental harmonic is remained. As a result, the rotor orbit becomes an
ellipse as shown in Fig. 9(b). Because of the different of the rotor supporting stiffness in each
DOF, the rotor orbit is not a circle but an ellipse.

Then, the frequency of 25 Hz is added to the reference input signal. The experiment
result with all harmonics suppressing is shown in Fig. 10(a). The peak of the fundamental
harmonic at 25 Hz also is vanished and the rotor orbit visibly converges toward its center in
Fig. 10(b).

4 Conclusion

In this study, the multi-frequency periodic vibration suppressing method based on the

FBLMS algorithm is adopted for the AMB-rotor system at a computational cost far less than

that of the conventional LMS algorithm. The unique feature of the FBLMS algorithm is

characterized by no influence on the computational complexity, regardless of the number of

the disturbance frequency components within the range of sampling frequency. Moreover, the

weights in the FBLMS algorithm have the intuitional relation with frequency. As a result,

each harmonic components of the vibration can be addressed respectively or together. The

experimental results for the reciprocating simulating disturbance test and the rotating

harmonic vibration test show that the proposed adaptive structure with the FBLMS algorithm

can achieves the good effectiveness for suppressing the multi-frequency periodic vibration.

(a) (b)
Fig.8 power spectrum distribution and orbit of rotor vibration without vibration suppressing
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(a) (b)
Fig.9 power spectrum distribution and orbit of rotor vibration with high harmonics

suppressing

(a) (b)
Fig.10 power spectrum distribution and orbit of rotor vibration with all harmonics suppressing
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